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Abstract

A theory of human cognitive processes in writing code for computer
programs is presented. It views behavior in terms of three processes,
understanding, planning, and coding. The first of these consicts of
acquisition of information from the problem instructions and directions.
This is usad by the planning process to create a soiution pisn stated as a
set of functional specificaticns i/ a language which is independent of the
syntax of the particular programming language. The coding process
converts this plan to code using a rrocess named "symbolic execution” in
which pieces of code are assigned effects expressed in terms of the
functions the programmer intends the code to perform In achieving the
purpose of the program.

Within the framework of this theory, a more explicit model of the coding
process was developed. The model is based on a productinon system and
has been implemented as a computer program. Given plans taken from
protocols of a programmer writing a series of short FORTRAN programs, it

is able to generate the same code in the same order as the programmer
did.

The modei makes three assertions about programmer behavior in
writing programs:

1. Programmers have a large amount of specific knowiedge about
how to encode particular plan elements.

2. Programmers generste code by using the effects assigned to
each piece to generate the next.

3. The basic units of a programmer’s knowledge of language
syntax are determined by the way in which he uses the language,
rather than by pronerties of the syntax aione.

The implications of these assertions are discussed fo- the use ot
production systems to represent behavior, for teaching programming, for

error analysis in de-buggina, and for the use of back-tracking in problem
solving systems.
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A Theory of Computer Programming
} |
!

1.1 Imtroduction |

The development of large digi'al computers over the past 25 years has led to the
deveiopment of theories of human behavior which view It ‘n terms of information

processing systems; since its inception In the mid-1950’s the Information processing

framework for theories of human problem solving (Newell & Simon, 1972) has been
applled to a large, and still groving, set of tasks which can be categorized along a few
baslc dimensions. One large group of tasks that has been useful in developing the
mechanisms of the framework consists of laboratory tasks of short duration - a half
hour or less - with relatively little direct applicability outside the laboratory. Subjects
rarely have much experience with the tasks, and they do not attain any large degree of
skllii during the course cf the study. Examples of such tasks are symbolic erithmetic
("crypterithmetic™) problems (Newell & Simon, 1972), the Moore-Anderson loglc
problems (Newell & Simon, 1972), and the problems, such as Tower of Hanol and
Missionarles and Cannibals, used with the General Problem Solver (Ernst & Newell,
1969).

Other work In the context of this framework has follower! two major branches. One
direction in which work within this framework has moved is towards studying certain
simple, basic problem-soiving processes which act as the building biocks for problem-
soiving in a wide variety of tasks. Included are studies of concept-ldentification (Simon

& Kotovsky, 1963), children’s and adult’s seriation behavior (Young, 1973; Kiahr, 1972),

and children’s conception of number (Klahr and Wallace, :973).




A second major effcrt has been directed towards the study of behavior in more
complex problems such as chess (Newell & Simon, 1972). Though the segments studied
in the laboratory are usually short, chess differs from the tasks in the other groups in
that it is a task that takes a long period of time; an entire game takes several hours.
Additionall;l, and perhaps more important, behavior in chess is highly determined by
skills acquired over a long period of time and which are developed to a diverse extent
in different players.

One indication of this comes fro.n a study (Chase & Simon, 1973) on differences in
performance between a chess master and lesser players on tasks involving the re-
construction of a position cn a chess board after viewing the position on another board.
From analysis of timing data, the superior performance of the master player s
attributable to his ability to organize his perceptions of the board in larger short-term
memory chunks or urits than those used by the other players, rather than by his having
a larger short-term memory per se. In Simon & Giimartin (1972), this ability was
explained on the Yasis of the master’s having available a larger number of patterns into
which the pieces on the board could be organized. Since these patterns must be
acquired from experience with and study of the game, these studies show clearly the
importance of acquired skill, rather than inherent ability, in chess behavior.

The study of computer programming is an addition to this second group. Like chess,
computer programming is a quite protracted problem-solving activity; some programs
take as much as several hundred hours to write. Also like chess, programming involves
skills which are built Up over long periods of time; the existence of semester-iong

university courses in programming and of lengthy books written on programming

techniques are an obvious basis for this assertion.




Programming ditfers from the other members of this second group in one major

respect. In solving other probiems in this group, the problem solver’s behavior can be
described in terms of a closed, smail set of primitive knowledge eiements and a ciosed,
small set of operators which act on these knowledge elements. For example, a chess
piayer’s behavior In playing a game of chess can be described in terms of the player’s
knowiedge of conflgurations of pieces and of a set of moves or move sequences which
alter these config.rations; while these may very slightly between, say, openings and
middie-game piay, they remain essentially the same through out the game. These
knowledge elements and the operators form together what is known as a probiem
space; the probiem space together with the ruies for when the operators shouid be
invoked form & compiete modei of an individuai's behavior. As the evidence presented
iater in this paper wiil show, the situation In programming is quite different; instead of
solving the problem with & fixed set of operators and knowiedge eiements, new
knowledge eiements and cperators are continuousiy being irtroduced as the probiem-
soiver \'works towards a soiution. This is a typicai situation In a ciass of problems
referred to ss “design” probiems. Another exampie of a design probiem is the

arrangemeht of fixtures in a bathroom (Eastman, 1969).

1.2 A Theory of Human Computer Programming Behavior
Aithough programming is an activity which is engaged in, in one form or another, by
more.then a miilion people (Boehm, 1972), research on human behavior in programming
is very sparse. The eariiest research along this lines is a smaii group ofl studies
concerned with the effects of time-sharing versus batch on programmer productivity
(Grant and Sackman, 1967; Smith, 1967; Schatzoff, Tsao, and Wiig, 1967; Goid, 1968 ).

While chenging economics have aitered the answers to the basic cost questions that




these studies were aimed at, an incidental finding, the extremely wide range of
differences in performance across both problems and programmers, has been supported
by later studles. (A recent study by Weinberg (1974) suggests that this may, in part,
be product of programmer goals rather than a property of the task itself.) A second
group of more recent studies has been in the area of debugging behavior (Rubey, 1968;
Youngs, 1969; Gould and Drongowski, 1972; Gould 1974). While It is difficult to
summarize the results of all these studles, it is notable that they all indicate that
certain language structures appear to cauce particular difficulty in debugging. Worthy
of mention because of its title, the book, Psychology of Programming (Weinberg, 1971),
is directed more at the social psychology of the programming environment than at actual
programmer cognitive behavior. Finally, most recently there has been research done on
the effect of certain language constructs on program understandability (Sime, Green and
Guest, 1973; Weissman, 1973). It has eleborated the finding hinted at in the debugging
studles, that some language constructs are easier or better to program with then others.

The research presented here takes a ditferent approach than these previous
studies. Instead of attempting to measure individual variables associated with
programmer behavior, it presents a theory of the program writing process. The theory

is based on a set of ideas developed by Allen Newell (1974) (i) and lies within the

(i) The elements of the Newell theory that are used here are: (1) Development of
plans by heuristic search consisting of successive functional elaboration In which
functional specifications Invoke structures which, in turn, require further functions. (2)
Generation of code by a symbolic execution process in which, first, code is lasid down
and then consequences are generated from it. This consequence generation produces a

large number of sub-problems. (3) Solution of these sub-problems by a recognition
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framework of the information processing approach to human problem solving.

1.2.1 The Scope of the Theory

Though computer programming has been spoken of as though it were one task, In
fact, a number of different tasks are included uncier this heading. They include, among
many others, writing specifications for programs, writing progreams given a set of
speclfications, debugging programs that another programmer has written, and writing
documentation for programs. The particular task that has been selected for the focus of
this theory is one in which the programmer is given a description of the Input data and
a speclfication of the desired output. The programmer must then find an algorithm,
including the selection of a representation within the program for the external data, to
produce the desired output and implement the algorithm in the programming languege.
Ps a working situation, it is one which occurs frequently in scientific and educational
programming environments and as a sub-part of almost any larger programming task.

The theory is not yet formulated to include debugging behavior or situations in
waich different parts of the task are performed by different people, for example, as In
large system writing projects. These restrictions ere due mostly to limitations of
. resources, rather than to any inherent properties of the theory that are apparent.
Some justification for the debugging ommission Is that, since program writing proceeds
program debugging chronologically and since the debugging process includes or makes
assumptions about the processes which generated the code in the first place,
development of a theory of program writing ought to take precedence. Similarly, a
theory of how one individual performs the several parts to this task In sequence takes
;:;::;:s-.-;’;;;e.t-her with symbolic execution, this implies goal control dependent on the

problem structure rather than via a goal stack.
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precedence over theories about how the task is performed by severai indlviduels

interacting.

1.2.2 The Structure of the Theory

The theory consists of three besic processes, undsrstanding, pianning, and coding,
though this work wiil focus only on coding. [i asserts that each of these processes
occurs one or more times in every programming task. The relationships among the

processes, particulariy regarding the way they invoke each other are described in the

following sections.

1.2.3 Understanding

When a probiem-solver is presented with a probiem, he has a variety of sourcus of
information, both internai and externai, availabie about it; these Inciude his general
worid knowiedge, knowiedge about the generai type of probiem at hand, reference
works such as programming ianguage manuals, and last but not least written or spoken
problem directions. Before he can actually start work on the probiem, he must use
these Information sources to build representations of the basic elements that the
probiem deals with and of their properties. Specifically, he must have representations
of the initial state of the problem, the desired final state or goal, and one or more
operations which he can apply, appropriately, to begin the transformation on the initiel
state. The process of building these representations is referred to as "understending”
in this theory; it is one of the three basic probiem-solving processec which make up the
theory.

The modei for the understanding process that is adopted for this theory is based on

one developed for a variant of the Towers of Hanoi task (Hayes & Simon, 1973). In




their study subjects were given a single set of written instructions and had to solve the
prc;blem described In it. Their theory for the task proposes two basic processes, an
UNDERSTANDING process and & SOLVING one; only the UNDERSTANDING process will be
discussed here. In their theory, the UNDERSTANDING process extracts information from
the problem description until enough information has been extracted to permit the
SOLVING process to begin work. The SOLVING process then runs until either the
problem is solved or the probiem solver runs into difficulties; if this occurs controi may
then return to the UNDERSTANDING process. The UNDZRSTANDING process consists of
two sub-processes, a LANGUAGE interpreting process and a problem space
CONSTRUCTION process, which aiternate In the same manner as the UNDERSTANDING
and SOLVING processes. Explicit mechanizms are presented for the Internal structures
of the LANGUAGE and CONSTRUCTION processes, but no mechanism is provided for how
the slternation between the two takes piace. Simiiarly, while the general structure Is
outlined, no specific mechanisms are provided for the alternation between
UNDERSTANDING and SOLVING.

Not surprisingly, evidence of an understanding processes, In the form of alternation
between reading directions and reasoning about what they say, Is also seen in records
of behavior In programming problems. In essentlal structure, this understanding
process Is presumed identical to the one described by Hayes and Simon; information
extraction and Incorporation phases aiternate until understanding is complete. A mejor
ditterence from their model occurs in the relationship between understanding and ‘he
other pnrt.s of the problem-soiving process. When understanding terminates the
outcome In thelr model Is a problem space, a ciosed, smail set of operators and

knowledge primitives; the final solution to the problem takes place In this problem




space. In programming, as mentioned, problem solution does not take piace in the same

sort of problem space as fo- non-design tasks; what takes place instead when
understanding terminates is the second of the three processes which make up the

theory, plenning.

1.2.4 Planning

Pianning is the second of the three processes postulated by the theory. The type
of pian produced by It can best be described as a method for soiving the programming
probiem; it consists of specifications of the way in which information from the real world
is to be represented within the program and of lhé operations to be performed on
these representations in order to achieve the desired effects of the program. These
methods are used as schemas or templates to guide the writing of the actusi code in
much the same way as plans are used to guide solutions of logic problems by the
Genersl Problem Soiver (Newell and Simon, 1972),

It is an essertion of the theory thet such o plan exists for neerly every
programming probiem that fits within the besic task definition. The basis for this
sssertion of the existence of plens is ome of sufficiency. The space of possible
programs is huge, even in comperison with other complex tasks; compare, for example,
the number of possible, “reasonable,” programs with the number of "reasonabia” chess
games. Search of even a small fraction of this space is not feasible; therefore,
programming must involve extremely powerful heuristics which eliminate search or
reduce it to a trivial level. In nearly all programming languages, each line of code
actually invoives a great many declsions - basic statement types, variable and
expression choices, labels, etc. - and any heuristic which evaluates code on the basis of
a single decision is not likely to have sufficient power. Only the use of pians is a
powerful enough heuristic to make program writing feasible.

10




Plans are expressed in a functional language of the sort investigated by Newe!i and
Freeman (1971); functions specified in the ianguage invoke structures which, in turn,
require other functions, a type of behavior which may be characteristic of the whole
class of design problems. These functional specifications are organized in sequences in
the order in which they are to be carried out. If the program Is large and complex
enough, these sequences may be nested in one another so that one sequence acts as @
further elaboration or clarification for a step in another sequence. An example of this
might be in a program to print all the odd numbers In an array. The rlan could appeer
as:

1. Go through the array.

2. Test each number to see if it’s odd.

3. lfitis, print it out.

The second step might require the further eiaboration:

2a. Represent each number as an integer.

2b. Divide it by two.

2c. Multiply it by two.

2d. Compare the result with the original number.

2e. lf they are not equal, report that the number is odd.

It is worth comparing the use of this functional language for pianning in
programming with the content of pians in the planning version of GPS for the loglc tesk
(Newell and Simon, p.428; 1972). GPS plans by first solving the probiem using a set of
abstracted, usually simplified, operators to solve the problem and then using this
solution as a pian to guide solution using the originai set of operators. The way the
fatter Is done Is to convert each of the operators in the abstracted soiution into en
apply-type goal for solution in the original space. These apply goals specify a function

to be invoked, end they often result in the creation of sub-goals for the production of

certain structures. When used in this way, the languages of means-ends specification




used In GPS is equivalent to the functional language used by human progiammers In
thelr plens for programs.

Also relevent Is the language accepted by the Functional Description Compiler
routine of the Heuristic Compiler (Simon, 197%2). Fhe Input to this routine is a set of
specificetions of functions or operations to be performed. The lenguege used to state
these functions Is independent of the syrtex of the target languege end at
approximately the same level of sbstraction as that of plans in this theory.

For plans to operate successfully as heuristics, the functions specified In them must
be more globel and more general than those avallable as primitives in the programming
language. There are two reasons for this. The first is so that each function In the plan
generates several statements in the program; if this were not the case, then there
would be nothing to insure consistent use of variable names and the llke, and to
guarantee that a quantity calculated In one line would not be immediately recalculated In
the following line because it was needed again.

The second reason is that there are some decisions about the stru_cture of @
program which carry across many lines or sections of code and which cennot be
expressed in the primitives of most programming languages. One example of this kind
of decision might be the selection of a linked list data structure in @ FORTRAN program.
The use of this particular data structure will be important within the generation of
many lines of code, but there is no way to express this decision at the level of the
primitives available in FORTRAN. This reasoning supports the idea that the functions
specified in plans are more global and general than those available as primitives In the

programming language. which carry across many lines or sectors.

An important question in discussing programming plans Is to what extent these




plannirg functions are sufficiently global and general to be used across different
programming languages; this is equivalent to asking to what exter' the plan that the
programmer creates is dependent on the language in which the program will be wrlitten.

One possibility is that, for a given problem, an entirely different plan will be created
for each programming language in which the program is written. There are two
substantial arguments against this position. One is the introspective report of many
programmers that they are able to think about ihe solution to a programming problem in
terms independent of the syntax or semantics of a particular programming language. A
second Is the informe! finding that, when given a problem description and several,
similar, languages in which the program might be written, most "multi-lingual®
programmers have no difficulty in creating plans that will work In any of the languages.

A second possibility, representing the opposite extreme, Is that a single planning
process and functional language serve for all the languages that a programmer knows
and thet the plan is dependent on only the problem alone. This would Imply thet, for a
given problem, the programmer would use the same plan whether the target language
were LISP or FORTRAN. In fact, programmers do not usually use plens involving lists If
the program is to be In FORTRAN nor do they select algorithms using arrays for LISP
programs, indicating that the creation of a plan is to some extent dependent on the
programming language.

The locus of this language dependency seems to be shared between two attributes
of programming languages. Cne is in the data structures (and access methods) avallable
In the programming languages; languages which share common data structures probably
also share common plans and a common planning process. This would be consistent

both with the observation that programmers are able to create common plans for palrs
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of languages such as ALGOL and FORTRAN, which both have array data structures, and

with their creation of different plans for LISP and FORTRAN, which do not share e
common type of data structure.

The second attribute which determines whether different fanguages share common
plans could be control structure. Even two lengueges sharing common data structures
may not be able to use the same plarms if one hes a primerily recursive control strucure
while the other is strongly sequential. Comsider the differences in the flow-charts for a
LISP recursive factorial program versus a FORTRAN Iterative one.  This may also play
a roll in the report of many programmers thet they are unable to creste common
FORTRAN-LISP plans, even when the LISP has an erray features.

Planning does not take place as a single operation; inst;ad, a process of step-wise
refinement takes place in which each step makes part of the plan more detailed. The
terminating condition for the refinement is that some (reasonably large) part of the
plan is sufficiently detailed so that the programmer feels that he knows how to begin to
translate it into code, even though all of the details of the code are stlll unknown. At
that point the final process in the writing of programs, coding, takes over. The coding
process operates on a piece or part of a plan until either code is produced or some
criterion Is met which causes the coding process to report failure; when failure occurs
information is passed back to the planning process which again attempts to produce @
codeable plan. This alternation Is very much like that which occurs between
understanding and solving in the Hayes and Simon mode!.

As has been mentioned, the primary focus of this will work will be on the coding
process. Since the coding process is dependent on the outcome of the planning process,

@ brlef exploration of possible ways in which plans could be generated is worthwhile.

14
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To begin with, a recognition process must play a large role. In many, if not most,
programming problems, planning takes place fairly rapidly; in the problems studied in
this research, it began less than 1.7 minutes after the subject had received the
problem description and lasted less than 5 minutes in a 25 minute problem. Little ¢r no
evidence of of any kind of search activity was seen. This suggests that what takes
place is basically a match between characteristics of ‘he current problem and stored
information about similar problems that have been done in the past. The information
retrieved this way could be used either to retrieve a stored plan directly or to provide
other info}mation which could guide the operation of a simple, fast-;cting plan
assembler. This recognition mechanism also implies the existence of mechanisms for
extracting characteristice from current problems and mechanisms for abstracting plans
from solved problems. Building a theory of the latter will be an especially challenging
problem, as other work on plan abstraction has demonstrated (Fikes, Hart, and Nilsson,
1971).

While the recognition system may take care of the overwhelming majority of cases,
other mechanisms will be necessary for the cases in which stored information is not
sufficient. These might be divided into two broad, general classes: those which use
pr:-gramming knowledge and those which use knowledge from the real-world problem
tJomain for which the program is being written. In the former are included patching and
rearranging existing plans (Sussman, i973)% generalizing from examples: and the use of
diagrams or drawings (Gelernter, Hansen, and Loveland, 1960). In the latter are
included all those situaticns in which the programmer goes outside the programming
domain and uses knowledge about the intended use of the program, relationships among

the data, etc. to solve the problem; an example might be use of knowledge about a




company’s accounting poiicies tc, come up vith a pian for writing a payrolii program. (i}

1.25 Coding

The third of the three processes in the theory is coding. For human programmers,
the besic cycle for the generation of code consists of using the pian to select and write
a piece of code, assigning an effect or consequence to the code that has been written,
and comparing the effect or consequence to the stipulations of the pian. The resuits of
this comparison are used to select amd write more code or to chenge the code that has
been written; in turn, an effect is assigned to this new code which s compared to the
plan. This cycle conlinues untit the cumulative éffect of the code meets the
requirements of the pien or until some condition, such as effort expenditure, is met
which indicates that the piece of plen is not codeablie.

A similar cycle occurs if the programmer is going over ccde he has aiready written,
as often occurs when checking over code cr going back to add initializations. In this
case, the programmer takes each piece of the written code, assigns an effect or
consequence to it, and compares it with either the pian or with the effect he assigned to
the code when he wrote it the first time.

The effects that are assigned to code are based on the diffarentlation; among the
data that the program must actually make in order to accomplish its purpose. Consider
as an example a program for printing &' the odd numbers in a set of integers. The
program m.ust differentiate Letween odd and even numbers in order to perform this
tesk. An effect that couid be assigned to a iine of code in this program might be "if the
““(.i-;“l;-lt:;;njectured that one characteristic behavior in the writing of large, as
versus small, programs or systems is that more of the probiem-solving behavior
involves the use of this non-programming knowiedge.
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number is odd, this branches to statement 50," a statement which uses the information
about the odd-even distinction. As more lines of code are written, their effects are
accumulated in a manner which also makes use of these differentiations; thus, the
effects, "this loops through all the numbers” and "if the number is odd, branch to
statement 50," might be combined ‘o give "this tests each number to see If it's odd.”

When effects of this type are assigned to whole segments of code, the result is that the

code is executed with symbols such as "odd number" replacing the real data. Hance, the

whole process has been named "symbolic execution.”

The language in which these effects are expressed is a functional one that
resembles closely the language used to express plans. There is, however, an important
distinction between effects in coding and plan statements in the coding process.
Consider the plan statement, "loop through the list," and the effect statement, “this
loops through the list." The firs! is the statement of an intention, not an assertion of s
result that has been achieved; as such, no attempt is made to check its accuracy. The
effect, (i) on the other hand, is a statement about what the programmer believes code
actually does. Even without actually having the machine execute the code, the
progremmer can double-check this statement by making a second pass through the code

himself. In protocols of programming behavior, this distinction between planning

(i) If the plan is a very complex one, it may happen that the programmer attempts
to verify, while seemingly still in the middle of the planning process, that some part of &
plan does indeed achieve an effect that some other part of the plan requires. If the
reasonable assumption is made that what actually takes place is a brief coding episode
in the middle of planning, this kind of behavior is also consistent with the intent-effect

distinction.
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statements of intent and coding statements of effect appears clearly enough so that it
mey be uaGd to Identity which of the two processes is taking place at a glven. point.

An exampie of a complete symbolic execution cycke for the probiem just mentioned
might start with the pian eiement, “test each number o see if it’s odd.” For a FORTRAN
program, the programmer would begin by writing DO 10 1=1,100 and assigning it the
effect, “this loops through all the numbers.” Given this effect and the pian, the

. programmer might next write IF(L(I)/2¢#2 .NE. L(I)) GO TO 20 and then assign it the
effect, “this lests whether its odd and goes to 20 if it is.” Finaily, after ciosing the DO

loop by writing, 10 CONTINUE, the programmer would summarize the effect of aii three

lines as “this loops through ali the numbers and tests each one to see if its 0dd." Since

this matches the pian element, program writing would proceed to the next pian element.

An siternative possibility in this exampie iliustrates another espect of symbolic

execution. Suppose the programmer had known only a test for even perity. Since it

was the only parity test available, he might have written IF(L(1)/282 EQ. L(1)) and

assigned to it the effect, "this tests whether its even.” Noting that the plan requires the

opposite effect, he would then alter "EQ." to "NE." to obtain the test for odd perity.

The generai principle illustrated here is that, confronted with erroneous code, the

symbolic execution proc2ss attempts to patch or modify it to obtain the desired effect.

This patching or modifying behavior is one of the main characteristics that

distingulsh symbolic execution from the sort of goai tree building and backtracking

behavior seen historically in programs such as the Logic Theorist (Neweli and Simon,

1972) and, more recently, in systems such as PLANNER and CONNIVER (Hewitt, 1971,

Sussman & McDermott, 1972) These systems rely heavily for problem soiving power on

the ability to backtrack to a previous, successful position. In symbolic execution, on



the other hand, attempting to modify or add on to whet had already been done tekes
precedence, and backtracking is an infrequent event.

When back.racking does take place in coding, it may occur st several levels. In
addition to attempting to code the plan element in an alternative way, It may be declded
thiat it is the plan which is at fault. When this happens, a return is made to the planning
process, and an attempt is made to find a plan or piece of plan which Is easier to code.
This new attempt in planning may even require a return to the understanding process to
re-interpret the problem. If the understanding process is considered to be a "top" level
process and the coding process a "bottom” level one, then this ability to backtrack to
the planning and understanding process represents a "bottom-up” process, and both

bottom-up and top-down processes take place in programming.

1.3 The Design Task Nature of Programming

In relating programming to other tasks which have been studied within thg theory of
human pro.blem solving, it was stated that programming differed from other tasks of
similar proportions in that new knowledge elements and operators were Introduced
continuously during the course of problem-solving. This design task nature of
programming can be derived by two independent lines of reasoning based on two
different aspects of the processes described in this theory. First, the recursive
interaction among the three processes makes it impossible to represent the entire task
in a single problem space. Even if each of the three processes can be represented
compactly as a problem space, the union of these spaces would contain too many
Qifferent operators and knowledge elements to fit withi~ the problem space definition.

A secund argument for the design-task nature of programming Is thet both the

planning and code generation processes have characteristics which make their
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representation as problem spaces extremely unlikely. In the previous discussion of
planning, two general classes of methods for the construction of plans were presented.
The first class of methods involved rapid, recognition-like processes. Behavior
produced by these methods might possibiy ve fit into a problem-spece characterlzation
since they could Involve classitying probtems using orly a few basic elements and then
generating the plans using a small set of operations. The fit of this characterization
would, however, |.robably not be a very good one, sinca some of elements end
operators would only be used once in given situation. For the second set oi methods,
the situation is even worse. Use of diagrams, playing with examples, etc. are behaviors
which would be very difficult to handle using a closed set of operations and knowledge
elements. For methods Involving use of knowledge from other domains, in particular, a
single, small set of operations and knowledge elements will be plainly unsatisfactory.
Since most of the methods which make up the planning process cannot themselves be
represented in problem spaces, it is clearly impossible to represent the entire process
this way.

The unsuitability of problem-space representations for the code generation process
is derivable from the way in which sequences of code are created. As each piece of
code Is lald down, the effects or consequences that are assigned to it serve as part of
the invoking conditions for laying down of the next piece. An alternative way to
express the same process is to consider the plan element and the effect of a previous
pieces of code as together constituting a sub-problem for the creation of the next
piece. A recognition process generates the required code to solve the sub-problem,
and the efiacts assigned to this new code serve as part of a new suo-problem. From

this perspective, code generation invoives the statement and immediate solution by
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recognition of a huge number of sub-problems. Representation of these problems and
their solution in terms of a small, closed set of operators and knowledge elements is
impossible ior most coding behavior, ruling out the use of problem spaces to model
coding behavior. Thus, since both the planning and coding processes cannot be

represented as problem spaces, an overall problem-space representation for the

programming task is not possible.

1.4 Qverview and Forward

The theoretical framework presented In this section is a complex one; it specifies
three major procasses, each of which may have a unique internal structure, which can
interact extensively with each other. In order to verify this framework against
experimental data, it would be necessary to completely specify the internal structure of
all tl;,ree of the processes and to spell out precisely the way they interact. Doing this
specification and verification for the complete framework would involve unavailable
resources of time and experimental effort. Therefore, th.s work will focus on

presenting a complete model and verification for only one of the three processes In the

theory, coding.
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A Data Base for Testing the Theory
In this section, the experimentil situation end deta used to develop and verify the
model of coding will be presented. While a more conventional format would be to
present this information after presentation of the mcdel, presentation he-~ has two

advantages: it will make understanding of the model easier by giving readers an actual

situation to refer to, and it permits some further explication with reference to an actual

programming situation of a few aspects of the framework presented in the previous

chapter. (Readers who find the conventional ordering more comfortable may read the 1
next chapter before reading this one.)

The data on which this demonstration is based consists of behavloral records of e
programmer writing and debugging 23 short programming problems. (Even though the
theory does not include debugging behavior, the subject was asked to debug the
programs, both to collect the data for possible future use and, more important, to Insure

that they were under the same sorts of constraints in writing the programs that they

would be under outside the experimental situation.) The 23 problems were crested

both to be similar enough so that the same behaviors would be repeated In different
problems and to differ enough to minimize learning effects across problems.
Additionally, they each had to be short enought to be written and debugged in a 2 hour
period.

All the problems involve manipulations on an array, L, 100 in length, filled with
random Integers. For the first subject for the first 8 problems the numbers lay In the

range, -10000 to +10000; this proved somewhat difficult to read in print-outs so that
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the range was changed to -1000, +1000 for the remaining data collection. A second

array, M, also 100 long, was provided to be used for Indicating certain Information about
L. Each problem was given a proper name (e.g. LARRY) to avoid any Inference of
ordering among them. The problems are listed in Appendix 1.

Subject instructions were to write and debug each of the programs In FORTRAN
and to talk aloud about what was being done. Since FORTRAN as a programming
language is currently in disfavor with much of the computer science community, a few
words of explanation for its choice in this sludy are in order. FORTRAN was selected
because it Is probably the most widely “understood” programming language, and Its use
guarantees understandability of this study by readers unfamiliar with PASCAL, ALGOL,
LISP or a host of other languages whose use may lead to superior programming
practice. Use of one of these other languages would certainly have lead to different
programmer behavior than that observed with FORTRAN, it for no other reason than
that different languages have different syntax; however, there Is, as yet, no reason to
believe that this different behavior would require different mechanisms than those
already in the theory.

While v)orking on these problems the programmer could use both paper and pencil
and a 10 character-per-second, hard-copy computer terminal connected to an
in-teractive. computer system with which the programmer was familiar; alternation
between the two could be made as desired. His behavior was recorded via a throat
microphone and a video tape recorder with the camera placed behind the subject.
These recordings plus the written materials and the computer terminal output provide
the basic data on which this study is based.

For each program, the programmer was given a printed description of the problem
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to be programmed and a copy of the general instructions. Whenever he was ready to
enter the progrem Into the computer he was given the name of a file on ‘he computer
system containing the necessary Instructions to read the data Into to the L array, set
the M array to zeroes, and write out the L and M arrays st the end of the program.

The subject employed in this study was a very experienced programmer. At the
time of this study he was a graduate student in computer science at Carncgie-Mellon
University. Prior to serving In this study, he had more than 10 years of programming
experlence. This included writing LISP interpreters for the Control Data G20 and Univac
1108 computers, writing an assembly system for the Univac 1108 in FORTRAN, and work
on the 1108 ALGOL compiler. He has written substantial programs in FORTRAN, ALGOL,
LISP, SNOBOL, IPL-V, APL, and BASIC as well as several other, less-known languages
and dialects. He had been employed as a programmer by Carnegie-Mellon University,
International Business Machines, and the National Bureau of Standards. Finally, from fall
of 1969 through the fall of 1972 he taught introductory programming courses at
Carnegie-Mellon University.

The programmer was paid $2.50 per hour for his time and worked in sescions of up
to 2 hours in length, the length of any given session being determined by the
programmer. With the exception of the 15th problem, problem KEVIN, each problem
was completed in a single session.

To those not familiar with the information-processing approach to problem-solving,
use of only a single subject may require a few words of explanation. The information-
processing theory of problem solving regards behavior as highly history dependent; any
single piece of behavior can be understood only in terms of It own particular

precedents. For programming in particular, averaging across the behavior of severs
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individuals would obscure these precedents. An appropriate research design for
studylng programming must, therefore, be based on examination of extended sequences
of behavior. While, ideally, this should be done for a wide range of individusls and

situations, constraints on resources have limited this study to a single individual.

2.1 Preliminary Processing

The video tapes were prepared for analysis by transcriting them into written
protocols. The transcription was performed by a single listener (the experimenter) and
was done in two major passes. The first pass transcribed the spoken Intormation only;
lines from this pass in the protocols in Appendix | are preceeded by an "S.” The second
pass was used to extract information from the visual record, such as writing behavlor,
etc; lines from it are prefixed with an "A."

The breaking of the spoken information into lines in the transcription was made
according to two rules: First, a break was made whenever the subject paused, even if
the pause was in the middle of a word or phrase. Second, if the speech was relativeiy
continuous, breaks were made between major clauses. The segmentation into iines In

the protocol is, thus, a rough indicator of low-level behaviorai units in probiem soiving.

2.2 Times

Timing information was obtained using the digital counter on thn video tape
recorder; the times are accurate to .37 (an absolute error of 5 seconds in a 25 minute
protocol). They are given in Table
2.2.1. In eddition to total time, separate figures are given for wrliing and debugging
time. Writing time was defined to be the length of time from receiving the problem

description until the program was executed or compiled for the first time. (Another
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possible alternative, time uniii ihe subject begar typing in the program, was not used,
since the subject occasionaily bogan typing in the program before he had completed
writing it.) debugging time was defined as the time from first execution until the
subject ssserted the program was operating correctiy. The probiems took a mean of

25.9 minutes to write and 15.0 minutes to debug for a total problem solving time of 40.9

minutes.

This is equivalent to an average of 4.9 seconds per iine of protocol for program

writing. 1
Tabie 2..2.1
Writing and Debugging Times for the 23 Problems
(in minutes)
Problem Writing Debugging Totai Ratio Lines
HENRY ¢ 19.2 11.1 30.3 1.7 27 ]
DAVID 55.8 4.4 60.2 12.7 43
WILLIAM 250 4.8 29.8 5.2 20
JOHN 275 10.2 37.7 2.7 12
PETER 6.4 8.7 15.1 0.7 9
CARL 13.1 5.3 18.4 25 9
BRIAN 437 11.3 54.9 39 23
PAUL 39.1 22.2 61.3 1.8 26
STEVEN 18.1 3.9 220 4.6 25
RALPH 22.9 25.6 485 0.9 17
RICHARD 13.3 30 16.2 45 10
ROBERT 22.2 12.7 349 1.7 26 ‘
HAROLD 423 55.4 97.6 0.8 35 1
DONALD 35.7 103 46.1 35 26
KEVIN 66.0 73.9 139.9 0.9 74
GERALD 60.4 36.8 97.2 1.6 65 ‘
FRANK 9.8 44 142 2.2 13
LARRY 44 49 8.2 0.9 10
LEE 240 175 415 1.4 30
PHILLIP 17.2 12.7 29.8 1.4 21
SAM 5.2 0.8 6.0 6.9 9 ,
ALLAN 38 1.6 5.4 2.3 10 ' |
OSCAR 20.4 2.9 233 7.1 21
Means: 25.9 15.0 40.9 1.7 24.4
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Several things are noteworthy about these times. The first is the wide range of
values for writing and debugging times. Extreme values differ by aimost an order of
magnitude. Since the problems were designed to vary moderately In degree of
difficulty, it is of interest whether the observed differences In times are a product of
problem difficulty or whether they have some other source.

One possible measure of actual problem difficuity is the number of lines of code
required to do the probiem. It is an imperfect measure since both inefficient solutions

and certain unusual problem characteristics may lead to Infisted vaiues; however, for

this probiem set and programmer, the measure is probably a useabie one. It correiates °

.69 and .75 with writing and debugging time respectively. While these are substantial
and indicate a strong relationship between problem difficuity and writing and debugging
times, they still ieave a considerabie portion of variance unaccounted for. This missing
variance, of course, represents differences in program writing difficuity that are
disproportionate to the number of iines In the program.

A second noteworthy point about the times is the correlation of .69 hetween
debugging and writing times. This is, again, a substantisl correiation; it Indicates that
problems which take a iong time to write aiso take a long time to debug, a conclusion
also made in other studies (Youngs, 1970). As in the previous case, the correlation ls
still considerabiy less than one, suggesting that there may be sources of difficulty in
debugging which are independent of difficulty in problem solving.

Finally, there is a high ratio of writing to debugging time. The median ratlo Is 1.7 to
1 and only 5 of the 23 ratios are less than | to 1. Other studies have found that
debugging time almost invariably exceeds writing time, occasionaily by as much >3 4 to

1 (Youngs, 1970; Rubey, 1968). It is difficult to plnpoint the cause of this difference,




the probiems, and the avaiiabiiity of "canned" code for doing input and output.

2.3 Verifying the Process Structure

but possibie explanations might include the high smill ievei of the subject, the nsture of

Using the foilowing set of criteria, the occurences of each of the three procesaes

were identitied in the protocois. (The complete set of classitications la ahown in

Appendix 3.)

Understanding
1. Reading the directions or problem statement.

2. Queations to the experimenter about problem Interpretation.

Pianning

1. Material, up to the writing of lines of code, which foilows phrases such
as “the way | would do this would be to ..." or “that seems simiiar to
another problem [ did" and which consists of a atatment of a general
soiution to the problem, usualiy in terms which don't refer to s specific

programming language.

2. References to knowiedge domains outside that of programming,

exampie, an inquiry into the mathematical properties of prime numbers.
While this sort of inquiry is usuaily part of the Understanding process, It may
siso take place in situations in Coding situations in which the programmer
cieariy already understands what Is desired of him, but In which the
edditionai knowledge from the outside domain is necessary to seiecting a

method.

3. Coding In a language other than the one in which the program wlli finally
be written if no attempt is made to check or verlfy the effects of these

lines of code.

Coding

1. Statements of an intent to generate code, such as "now I need & DO ioop.”

2. Statements of code being generated.

3. Statements of the effects of code that has been genersted,  particularly
the assignment of hypothetical or symboiic values  and the "execution” of

the code for these values.
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Item 3 under Coding requires an additional word of clarification. In protocols, PAUL

and STEVEN, the subject first "solves” the problem in a pseudo-ALGOL. While it may
seems as if this behavior ought to classified as Coding, it is, in fact, better classified as
planning behavior. The code that is written this way consists only of outlines of main
structures with few or no details and with many departures from ALGOL syntax Into
natural Ian‘guage statements. Additionally, phrases, such as "what 1 want to do Is"
fcllowed by a statement of a line of code, indicate that what is being stated are the
programmer’s intentions, rather thar effects that have already been achieved. For this
reason, this coding in an alternate language is classified as part of the planning process
@i .

To clarify these rules, the following example from problem RALPH is presented.

(This protocol was selected at random from those not used In other analyses; the

program writing portion of it is given in Appendix 2.)

Problem RALPH
1:17

This segment consists of first reading the probiem directions and then

asking the experimenter for clarification. It is classified as Understanding.

18:96

Line 18 is "well, I'll do it the same way" and what follows up to line 28

is a statement of two possible alternative general solutions. From line 29
(i) A second argument that this behavior is planning, not coding, is simply that there
is otherwise no justification for the extra effort required to write the program first in
one language and then convert it to another language, particularly when the subject

has had considerable experience programming in the final language
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to lines 96, the subject inquires into the properties of prime numbers. The

whole segment is, therefore, c'assified as planring.

97:180

This whole segment consists of sitarnation among (1),(2) and (3) under

Coding.

The foilowing table gives some summary statistics about this classification for aii 23

probiems.
Tabie 2.3.1
Process Occurs Aver. Time (Secs.) 7 Tims
Understanding 1.39 101.4 6.9
Pianning 1.91 3134 21.2
Coding 1.87 10605 719

The Occurence column contains the mean number of times per probiem the process

in that column occurred in the 23 problems. The Aver. Time is the average total amount

of time spent in that process in each problem. The Z Time heading gives the percentage

of the tota! program writing time spent in that process across aii probiems. Times were
calcuiated by muitiplying the number of lines by the time per line.

Note first that Planning and Coding occur about twice per problem where |
Understending takes place a bit more thsn once. Note aiso that Coding accounts for a
huge - amount of the total time spent on a problem. Using this information, a good J
characterization of the probiems in this study would be that the problems are easy to ; |
understand and the programmer can easily find a soiution method for them. This

method, however, requires considerabie work to actuaily impiement.
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A Model of Coding Behavior

3.1 Introduction

As mentioned at the end of the first chapter, the focus of this work is on a model of
the coding process to be applied to the behavior seen in the protocols. The model has
been implemented as a computer program written in the University of Californis at
Irvine dialect of the LISP programming language (Quam & Diffie, 1974; Bobrow, Burton &
Lewis, 1973). The program runs on the Carnegie-Mellon University Computer Science
Department Digital Equipment Corporation PDP-10 system. Except where reference is
made to specific programming conventions, "model” and "program” may be considered
synonymous for the rest of this discussion.

Since the model is intended to cover only coding behavior, the program operaies as
a theory of behavior only for segments of protocol which meet the criterion, discussed
in the previous chapter, for being classified coding. For these segments, the program
is a theory of behavior in two respects:

1. It generaias code in the same order as does the subject in the
protocols; in particular, it makas the same sort of corrections and
modifications to code as he does.

2. The knowledge state of the program - the information the program
contains about the status of the solution to the problem - changes in the
same fashion as is seen in the protocols.

This chapter discusses the basic mechanisms and data structures selected for use in




the mode! and discusses the psychological rationale for each selection. The suceeding
chapter applies the model to some of the protocols; chapter 5 examines the
psychological assertions that the model as & whole makes snd presents sdditionsl

eviderce for them.

3.2 General Structure of the Model

The theory of human problem solving in which this theory of programming Is
embedded p-ovides a framework for the structure of problem-solving models.  This
framework forms the basis for the structure of the model presented here; It Includes
two memories, each with unique accessing and storage characteristics, an overall
control structure, and several elementary processes which serve as primitives for
building larger-scale problem-solving activities. The following section Is 8 discussion of
this general structure.

The memory structures specified by the framework are a short-term memory (STM)
and a long-term memory (LTM). The short-term memory (STM) has a fixed capacity of
a small number (less than 20?) of chunks or symbols "each of which can designate an
entire structure of arbitrary size and complexity In LTM" (Newell and Simon, 1972 ;
p.795). Read-wrlite time for STM is very short, perhaps on the order of & tenth of a
second. During the course of normal problem-solving behavior, Information rarely stays
in STM more than a minute.

In contrast, long-term memory (LTM) is assumed to be very large or Infinite in
capacity. Write times are on the order of 5-10 seconds while read times on the order
of a tenth of a second. No information Is ever actually lost from LTM, but it may
become inaccessible In varying situations for verying lengths of time.

Though they may not be nesded at ail in solving some types of problems, mention
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should be made of the system's ability to make use of external memories (EM’s). EM'’s

include such things as blackboards, paper-and-pencil, switch settings, or even the
arrangement of physical objects, such as the use of paper cut-outs In a furniture
arrangement problem. For the subject in this study, the paper on which he wrote his
programs and the terminal print-out served as EM’s. Read times were a function of the
subject’s reading speed and were probably on the order of 1-5 milliseconds per chunk
(based on a reading speed of 200-1000 wpm. with each word a chunk). Write times
depended on the subject’s writing and typing speed. An approximate range would be
200 milli-seconds to 1 second per chunk, if a chunk is considered to be a flve letter
word and typing speeds are 60-300 wpm.

The permanence of information in this EM depends on two things: thé continued
availability of the paper, and the availability of appropriate access information in STM
or LTM. The latter is particularly important, since without some way to find where on
the paper information is written, information may be lost as effectively as If It had
been'erased.

The use of these EM's is a powerful tool in problem-solving; indeed, most of these
problems could not be solved without them. Their advantage is that they permit the
storage of Information, such as code that has been written, that is needed only
temporarily or infrequently without either the loss problems of STM or the Intertarence
and access problems of LTM. Additionally, they may offer faster and easier information
entry and retrieval than LTM does.

Problem-solving in the theory is controlled by a production system. A production
system consists of a set of pairs of conditions and actions to be pe-iormed when the

conditions are met. An appropriate resolution principle is employed to insure that only




one set of actions is taken at a time. Executing the actions results in some change in
the state of the world so that as the system operates different conditions are met and
different actions are invoked. None of the schioms involve explicit branching; rather, all

controi is accomplished through differences in the meeting of conditions and the

execution of associated actions.

The production system in the theory is a part of LTM; the conditions it is sensitive
to are the presence or absence of certain information in STM. The actions taken when
conditions are met change the contents of STM. The theory asserts that the production
system Is the only internal control mechanism for determining the course of probiem-
solving; an extensive defense of the suitablity of this particular controi structure for
modeling human behavior is given in Neweli and Simon (1972; p.804). Part of this

defense is quoted here:

1. A production system is capable of expressing arbitrary calculations. Thus it
allows the human Information Processing System (IPS) the information
processing capabilities we know he has.

2. A production system encodes homogeneously the information that instructs the
IPS how to behave. In constrast, the standard control-flow system divides
program information into the content of the boxes, on the one hand, and the
structure of the flow diagram on the other. In a production system this division
does not exist, except -to the extent that the ordering of productions carries
additionai information. Production systems are the most homogenous form of
programming organization known.

3. In & production system, each production is independent of the others - a fragment
of potential behavior. Thus the law of composition of production systems is
very simple: manufacture a new production and add it to the set. This
arrangement provides simpie ways for a production system to grow naturally
from incremental experience.

4. The production itself has a strong stimulus-response fiavor. It is overly simpie to
identity the two constructs, since productions also have additional properties of
mafching, opersnd identification, and subroutine cailing that are not apparent in
any of the usual formuiations of S-R theory. ... .. Nevertheless, productions
might well express the kerne!l of truth that exists in the S-R position.
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total problem solving process and not just ood program fragments. This is true
in part because we, the scientists sought to define them that way. Nonetheless
it remains true that such an organization of meaningful pieces describes the
data. ..

3
E
i
5 5. The productions themselves seem to represent meaningful components of the

6. The dynamic working memory for a production system is the STM (i.e., the

memory on which its productions are contingent, and which they modify.) This
conception fits well the functional definition of the STM as the collection of
information of which the subject is aware at any moment of time. This is not the
case with most other program organization schemes . . .in which the relatlon to
directly defined psychological constructs, such as STM is not clear. All these
other organizations contain implicitly an unknown amount of machinery that still
requires psychological explanation.

For a production system it remains to specify the matching, the operand
definition, the subroutining, and the sequential flow of control on the action side.
All these seem amenable to explanation. For instance, each production may
possess only a single action operator. In such a scheme the hypothesized action
sequences . . . would simply be our short-hand for an iteration through STM in
which the output of the first production includes a unique symbol (a linking
symbol) to identify the next stage of the action sequence. In this view, the
subroutine pointer stack consists of the linking symbols in STM. In such a system
almost all the program control apparatus is assimilated to the structure of STM.

In all events, the gap between program organization and the experimental
psychology of immediate memory and processing seems smaller for production
systems than for other program organizations.

7. There is an intriguing possibility that a production system offers a viable model of

LTM. Possibly there is no LTM for facts distinct from the production system -
that is, no basic distinction between data and program; rather the LTM is just a
very large production cystem. If this were the case, the act of taking a new
item Into LTM would be equivalent to creating a new production (or productions).

......

8. A production system, unlike some other programming organizations, offers a nice

balance hetween simulus-bound activity and stimulus-independent activity. The
production system itself is totally stimulus bound if by stimulus one means the
contents of the dynamic working memory (i.e.,, STM). All connnection between
two adjacent actions is mediated by the stimulus so defined. But this stimulus Is
per se neither internal nor external, if we take the view that STM is a
combination of the internal short-term store and the foveal parts of the visual
field (plus of course the symbols that have just been stored in STM upon
recognition of other externaal stimuli). If the vast majority of the productions
executed are reactions to internally produced symbols, then the system will
appear not to be stimulus bound. On the other hand, if almost all productions
take as part of their condition an external symbol, then the system will appear
to be very stimulus bound. Thus, the overly focused nondistractable character
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of programming models . . . .. is not a structural feature of a production
orgenization, but depends on the particular productions that the system contains.

3.3 Implementation in the Model
In the previous section, the basic structures of the problem solving system, such as
the production system and STM, have been discussed In general terms; the following

sections discuss the specific way they have been implemented In the present program.

3.3.1 " Short-term Memory: Model Implementation

In the Implementation that has been used for this model, STM consists of a fixed
number of ordered slots; when new elements are introduced they are placed into the
first slot, and each of the other elements is moved down one slot; the element that waes
previously in the last slot is lost off the end.

During the course of development of this model the numtar of siots was set at 14,
Since this is greater than the classic figure of "seven plus or minus two®™ (Miller, 1956),
a word of explanation is in order. First, what is normally meant by short-term memory
span Is the capacity for just the stimuli of the experiment; control or Intermediate
Information such as goal or sub-goal markers, temporary varlable values, or even the
experimental instructions, are not usually included. In this model, however, STM
contains plan elements, goals for other actions, and pointers to certain LTM structures
which are accessed throughout the course of problem solving. The greater number of
slots in STM is necessary to provide space for this information as well as for materiel
more conventionally included in measurements of LTM size.

The number, 14, was selected because, during model development, It was the size at

which the system operated effectively. Selection of a size on the basis of evidence
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from within the protocols, such as forgetting which could be traced to STM overload,
would have been desirable. No such evidence was, however, available. This Is to be
expected in a task such as this since, in the absence of experimental constraints,
subjects adopt strategies which minimize the possibility of memory overload (Newell and
Simon, 1972).

Besides the introduction of new elements, two other processes alter the contents of
STM, element modification and rehearsal. Element modification consists of changing part
of an element without altering its position. In rehearsal, an element already in STM is
moved Into the first slot from some other position; the remaining elements are each

moved down one slot until the empty space is filled.

3.3.2 Production System: Model Implementation

The production system used in the model is one of the variants possible in the PSG
system (Newell, 1973). In this variant, the invoking conditions are always tested In a
fixed order, and the first production which is true is executed. Thus, no cententlon
problems arise if the conditions of more than one production are met.

The inVoking condition for a production consists of a specification of one or more
items which must be present in STM for the condition to be true. If a condition does
contain more than one Item, then the items are treated conjunctivly, and all of them
must be presont for the condition to be true. It Is also possible to indicate (by
prece'eding them with the special symbol, tABSENT#) that items must be absent from
STM for the condition to be true.

Specification of an item as part of a condition can be done by giving the exact item;
alternatlvely, it is possible to use variables as part of the specification so that an Item

can be described In general terms. Variables can be of two types; those which match
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parts of items on the basis of their structure and those which match on the basis of

content. The first type of variabie is indicated by the presence of the symbols,
sATOMs, sLIST#, *ANYs, and #RESTS, in the description of the item; for exampie, sL19T#
matches any list which occurs at the corresponding point in the item. The second type
uses the symbol, sCLASSs#, foliowed by a iist of information that may appeer st that
point in the item specification; if it were desired to match either an A,B or C in the item,
then these three symbois wouid appear foliowing *CLASSs. Using varisbies of the first
type, a pian element such as "s PLAN-ELEMENT which calis for FINDing the FIRST
POSITIVE in the LIST OF NUMBERS" may be specified as "any element which begins
with a PLAN-ELEMENT." Variabies of the second type permit specifications such as “any
RESULT, PLAN-ELEMENT, or GOAL which contains a FIND."

. Matching within each individual condition proceeds on & first to iast basis, and each
eiement in STM matches at most one eiement in the condition. This means that if the
condition is "an element which is a CURRENT-GOAL" and there sre two elements in STM
which are b;th_ CURRENT-GOALs, then only the first of them wili take part in the match.

The combination of first-to-iast matching with the abiiity to state match conditions in
generai terms has an important psychoiogical consequence. Consider a situation in
which the subject is exposed to (CURRENT-GOAL FIND) foilowed by (CURRENT-GOAL
LOOP). Becasuse STM has a first-in first-out structure, the two items wouid appeer in
STM as:

(CURRENT-GOAL LOOP),(CURRENT-GOAL FIND)......

If the production to remember what the subject was +/n v/n iast had as its invoking
condition, "anything which begins with a CURRENT-(GOAL", then the subject would recali

(CURRENT-GOAL LOOP), not (CURRENT-GOAL FIND). Behavioralily, this can be interpreted

as interference between the two items.

I—




With the exception of the COMPARE-EFFECT function, discussed in the section on
Processing Mechanisms, the action part of each production is an unconditional sequence
of operations. No branching takes place among them,

Figure 3.3.2.1 shows the action operators that are used in the productions and the
knowledge structures which they affect. (Most of these knowledge structures are
discussed in the next section.)

Action Operators and the Structures They Affect

Actions Structures
REHEARSE STM
REPLACE STM
NEW-ELEMENT STM
NEWMEANING MEANINGS
GETMEANING MEANINGS
CODE-GEN STM
ADDCODE CODE
MODCODE CODE
COMPARE-EFFECT STM

Figure 3.3.2.1

An example of an actual production used in the system is:

NEW-CODE-1.

CONDITIONS:

(NEW-CODE sANYs)
(COOE)

(OLDCODE)
(PLAN-ELEMENT $REST#)
(MEANINGS)

UbwN —

DESCRIPTION OF ACTIONS:

1. REPLACE (NEW-CODE *ANYs) BY (ADD-ON sANY3)
2. REHEARSE (CODE)

3. REHEARSE (PLAN-ELEMENT sRESTs)

4. REHEARSE (MEANINGS)
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The CONDITIONS are patterns for items which must be present In STM for the actions to

be taken. A complete '<ting of all the productions is given In Appendix 5.

3.3.3 Other Long-term Memory Structures

The power of production systems as a programming device and thelr psychological
relevance suggest the attractive possibility of constructing the entire model as a single
production system. This approach has not, however, been followed here for this reason:
For the model to accurately reflect behavior, the contents of LTM must be modifiable
both within a single problem and across problems to reflect the changes In knowledge
caused by.such things as the creation of new code-variables, (i) assigning effects to
new code, and the construction of new plans. While a production system which could
modify itself would have the necessary properties, the difficulties involved In building
productions which create other productions are extreme. Among the problems to be
solved are finding strategies for deciding when a new production Is to be created, for
specifying what the conditions and actions of the new production are to be, and for
inserting the new production at the right place in the list of productions. There Is aiso
the programming problem of building a system which can modity itself.

Because of this problem, types of Information which must be modified within a a
problem or across the problems in the set are represented In two structures outside
the main production system, MEANINGS and CODE. They are accessed via access
“"(-i)“-B-;t;-;f-\e model itself and the programs written by the subject contain such
things as variables, expressions, etc. To avoid confusion, when parts of a program
written by the subject are being referred to, the terms will be preceeded by "code” as
in code-variable, code-expression or the general term, code-quantity, Use of these
terms not preceeded by "code” will refer to the model program.
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functions called from within the production system; additionally, some of the processing
on these structures is done by special processing functions that are aiso calied from the
production system. Both of these structures and their access and processing functions

are discussed in the following sections.

3.3.4 MEANINGS

As writing of the subject's program proceeds, a body of Infcrmation about the
program gets built up. Some of this information is contained in the code itself, but much
of it, such as the meanings of code-variables and code-labels and the effects of pieces
of code, cannot be retrieved from the writien code alone and is used over much too
long a time period for it to remain in STM, at least in an un-encoded form. The
structure outside the production system that contains this information Is calied
MEANINGS.

MEANINGS is organized as a collection of attributes and their values, one set for
each variable or expression in the subject’s code. Examples of the attributes include
the TYPE of the expression - with values of pointer, label, array, etc., and the NAME
that is actually used for it in the FORTRAN program, e.g., FRSTOD, L, I, or NEXT. The
values that these attributes may have ;an be either absolute or they can be defined
relative to another attribute or quantity. An example of an absolute value wouid be
FRSTOD for the NAME attribute of a variable used as a pointer to the first odd number.
An example of the use of a relational value might be in defining the vaiue of one
variable as being a pointer to another variable, as in a variable which means “pointer to
the positions in array L."

Not ali attributes are necessarily present for each code-quantity or even for ail

code-quantities of the same type; while a LENGTH attribute wouid be used with 8 code-
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quantity of TYPE "array,” (I) it would not be used for a code-quantity of TYPE "pointer”
or even recursively with another quantity of TYPE array. What determines assignment
of particular attributes to a code-quantity is whether use is made in the protocol of a
value of the attribute for the quantity; for example, a code-quantity of TYPE ARRAY
would have an sttribute of LENGTH only if the length of the array were actually used In
the protocol.

Instead of assigning an attribute only if It was used in the protocol, en alternative
strategy would have been to define generic classes of quantities which each would have
a set of required and forbidden attributes; for example, a code-quantity belonging to
the class, <pointer-variable> might alwavs have the attributes, NAME and VALUE, and
never have the attribute, LENGTH Whenever a code-quantity belonging to this class
was used in the model, all of these attributes would be given values and placed Into
MEANINGS. Such a strategy lends itself to the sort of procedural embedding of
knowledge used in systems such as PLANNER (Hewitt, 1972); additionally, it probably has
considerable psychological validity, since it is a likely supposition that programmers do,
indeed, associate whole famiiies of attributes with the type of a code-quentity. The
reason for not using it in this model is primarily one of research strategy: using generic
classes means that the attribute sets must be defined before the rest of the model Is
built and that the whole model must be revised each time these sets are changed. The

strategy which has been followed, of adding attributes as they appear In the protocol, Is

(i) Readers familiar with the issue of "type" in progrmming languages should be
aware thai the attribute, TYPE, refers to the way in which the subject conceptualizes
the use of a code-quantity, not to its formal type. Under this usage, the attribute, TYPE,

might still be needed for modeling programming in a "typeless” language.
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adequate for developing the rest of the model and does not require this constant
revision.

An exaﬁmple of an attribute that is frequently present for variables ar;d labels Is
called MEANS; its value is the type of information that programmer intends the variable
to contain or the location in the programming a label is represent. Thus, in a program
to fin.d the first odd number in a list of 100 random numbers, there might be a variable
of TYPE "arrzy,” LENGTH "100,” and NAME "L" with the value of MEANS being "random
numbers.”

The attributes that are actually used and a description of their v& Jes are given in

the following table:

Table 3.3.4.1
Attributes Used in MEANINGS
Attribute Description of Values

NAME FORTRAN name used in program
TYPE Type of a quantity such as POINTER, LABEL, or ARRAY
MEANS Intended meaning of a quantity,

such as "pointer to odd numbers”
LENGTH Length of an array
BEGINNING Beginning of particular information in an array,

usually O, since the information usually starts at

the beginning of the array
EXPRESSION Instantiated template
EFFECT An effect assigned to an instantiated template

At the lowest level, all access to MEANINGS are performed by two functions,

GETMEANING and NEWMEANING. These are used by the production system and by the
CODE-GEN and CODE-EL routines (described later) to retrieve and add information to
MEANINGS. The first of them, GETMEANING, takes two arguments, the name of an

attribute whose value is desired and a list of other stiributes and their values which

belong to the same set. Which particular Information is included in .his list is
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determined by the cali to the function, not by GETMEANING itseif. GETMEANING then
searches MEANINGS for a set containing both the desired attribute and the known
attributes and values. If one is found, the value of the attribute is returned.

As an example of how GETMEANING works, consider a situation in which an array
called RAN, which contains random numbers, has already been used in the program.
Now it is to be used again, and the particular name, "RAN", which is used in the program,
must be retrieved again. In the protocois, this might be indicated by something like,
"Let's see, | need to use that random number array again. What did I cali it?" Depending
on the situation, in modeiing this behavior, either CODE-GEN or CODE-EL would issue a8
call to GETMEANING. The first argument would be NAME, since it is the name of the
array thet is needed; the second argument would be the list: MEANS-"random numbers”,
TYPE-"array.”" The function wouid return "RAN" as its vaive.

Additions or modifications to MEANINGS are made by the NEWMEANING runcuon
which is called as a direct action of the production system. The first argument Is a list
of new attributes and their vaiues which are to be added to the set for a particular
code-quantity. The second argument, if present, is a iist of attributes and values that
already belong to the code-quantity set. The particuiar information present In this
second argument depends on which production calls it. The second argument Is used in
the s;me manner as the second argument to GETMEANING, to locate the set beionging to
a particuiar code quantity. Once the set is located, the attributes and values in the first
argument are added to it. Thus, in the previous exampie, if it were now decided that
the array in question were 100 eiements long and this information were to be added to
MEANINGS, the cali to NEWMEANING made by the production system wouid have as its
first argument, LENGTH-"100", and as its second argument: NAME-"RAN", TYPE-"srray",

MEANS-"random numbers.”
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To add an entry to meanings for a completely new code quantity, NEWMEANINGS is
called with no second argument. The attributes and values in the first argument are
then entered into MEANINGS as a new set.

In evaluating the psychological implications of this model, the first thing to be noted
is that, in retrieval of information about a perticular code quantity, the quantity is
specified only by the list of its known attributes and values. This, in turn, Implies that
information about the same quantity may be retrieved by a variety of different routes.

Given a quantity of TYPE-"array", NAME-"RAN", and LENGTH-"100", which MEANS-

"random numbers”, the NAME may be retrieved either by specifying it as being of TYPE-
"array” and LENGTH-"100" or as MEANS-"random numbers” and TYPE-"array”. This
ability to retrieve knowledge via a variety of routes using whatever information is
available is a useful one for modeling a set of protocols since, in them, no single type of
knowledge is consistantly used for retrieving information about code quantities.

The way in which code quantities are specified for retrieval also allows
representation of one common type of interference phenomenon. Suppose that several
different quantities have some attributes in common. If only a few of the attributes of @
desired code-quantity are specified and if these attributes are common to several code-

quantities, then the wrong code quantity may be retrieved. This provides a mechanism

for modeling those errors in which, out of several similar variable names or expressions,

the wrong one is selected.

3.35 Code: Basic Organization
CODE, the third major LTM knowledge structure in addition to the production
system and MEANINGS, is information about how to access an EM, the paper contalning

the code that the programmer has already written. For the following reason, It Is qulite
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likely that very little of the actual code remains accessible in LTM once it has been
written out on paper: when the subject in this study wanted to re-write or re-use
pieces of aiready-written code, longer than a line or so, he almost always had to find
and read the written code, indicating that he was unabie to recall them directiy from
r;wemory. Any use, modification or correction to code which has been written must
therefore retrieve the code from the paper EM; and the LTM must contain the
information necessary to perform the retrievai.

Using a representation of eye-movements, an explicit modei for retrieval from an EM
has been built for a seriation task ( Newell, 1972). Since eye movement or other

perceptuai data were unavaiiable, no attempt has been made to be as explicit in this

L case. Instead, a simplified structure for access to the written-code EM nes been
assumed: it is siways searched linearly and exhaustively, most recent code first. While
this is inaccurate for those situations in which some sort of index into the EM is used, it

is reasonably close to the actual situation in many cases, and, in those situations in

which it is not correct, its effects on the model can be compensated for in other ways.

While CODE has been defined as a memory that gives access to the written code,
internally, it consists simpiy of a listing of the iines of code that the programmer has
already written. To be consistant with the definition given previously, each of these
lines shouid be interpreted as a pointer to the "real” line that the programmer has
written on paper. It can altered by two functions, ADDCODE end MODCODE, which, |
respectively, add new code and modify existing code by replacing one piece of code 1
with another. Deietion of code is treated as a type of replacement. Retrievel of . |
information from code is done by a function, RETRIEVE-CODE, which uses information :
from MEANINGS about the effects of code to accomplish retrieval; it is discussed more

fully in the section on Adding and Modifying Code.
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3.4 Knowledge Representations in the Model

The preceeding section describes the basic knowledge structures of the model. The

following secticn describes the way knowledge is represented within these structures.

3.4.1 The Plan
According to this theory of programming, a plan consists of a sequence of functions
which must be performed in order to ackieve the desired effect of the program. In the

model, a plan is considered to be part of the production system; pieces of it are placed

[
.

one at a time by a production into STM for coding.

In the protocols, a single, functional language is used to talk about both plans and
the effects of pieces of code. This is reflected with in the model by using a single
notational system to represent both. For ease of understanding, only the important
characteristics of this notation is presented here; full details are available In Appendix

L 4. The general form that plan elements expressed in this notation take is:

<function to be performed> <operands>

A few examples of actual plan elements, with explanations, are given below:

a. (IF ((EVEN PARITY) ((LIST OF NUMBERSXPOINTER (NEXT ODD)))
(GOTO (LOOP END))))

"If the element in list of numbers which is pointed to by the pointer for
the next odd number is even, go to the end of the loop”

b. (ORDER (LIST OF NUMBERS))
"Order the list of numbers."

c. (FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS)))
(BEGIN! (OTHERWISE))
(SET (CORRESPONDING-ELEMENT (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))
(VARIABLE (LOOP-INDEX)))
(END?)




(END! (FIND-EXISTENCE-LOOP-THROUGH))

"Loop through the list of numbers until the first positive is found. If a
numbers is not positive, then set the corresponding element of the auxillary
array to the value of the Icop index.”

d. (FIND-AND-SWAP ((MULTIPLE) (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (INNER-LOOP-INDEX)))

"Lecop through the list of numbers looking for multiple of the array-
element pointer to by the inner loop index”

The elements beginning with BEGIN! and END! are special marker elements. In some
situations it is necessary to indicate that a group of these items are to be performed
together; examples might be to show that all the items in the group belong Inside the
same loop or that they are part of the same branch of a conditional. For this purpose,
these special marker elements, named after the BEGIN and END In ALGOL, are provided
which may be placed before and after sats of item to indicate that they belong
together in a group. (i)

A final comment about this notation as applied to ple .5 is that it makes no distinction
between plan elements which lead to the generation of actual program code, for
example, "set the pointer equal to the index of the first odd number found,” end th:se
which only result in the establishment of data representations, such as, "create a
pointer to .keep track of the location of the first odd number.” This use of a common
functional notation to represent both types of plan elements is true to the way both

types of plan elements behave in the protocol.

(i) This simple structure is adequate for all the protocols used In this study,
probably because the problems are simple ones; more complex problems may require

the use of sub-lists or trees to represent plans.
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3.4.2 Templates and Effecis: General Structure

Since the plan itself is presumed to be language-independent, the information about
the syntax and semantics of the language in which t1e code is actually written must be
contained in the production system. For syntactic information, this is done by means of
structures called coding templates which are formally equivalent to a Backus-Normal
form definition of the language, using very high-level primitives and very few recursion
slots. Each code template consists of a small segment of code - at most 3 or 4 lines -
specified as a mixture of three types of information: (1) actual code elements; (2)
descriptions or specifications of code elements that are to be inserted in the code;
(3)and parameter slots which will be replaced by descriptions or specifications of code
elements at the point when the template is actually used.

The actual code elements that appear in the template are primarily keywords and
separators in the particular programming language; for FORTRAN, examples might be DO,
GOTO, commas and parentheses. Descriptions or specifications are used for the names
of labels and variables, and for nested expressions; examples might be "abel for the
loop scope” or "pointer to the first odd.”

Parameter slots allow the templates to have wider generality by delaying the
description or specification of quantities until the template is actually used. An example
might be a template for setting two simple variables equal to each other; descriptions of
the specific variables would only be plugged in at the time the template was used.

When a code template is invoked in response to the content of a plan element, the
elements of it are processed one by one by a code generation function.  Actual code
elements are handled by having them leave appropriate traces in STM and in CODE,

indicating that they have been added to the written program. The handling of slot
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jescriptions depends on whether the code-quantity or expression has occurred -
previously in the program. If it has, then MEANINGS already contains the necessary
information about it, including its FORTRAN name; the name is then retrieved and treated
as an actual code element. If it is not, then a goal is created for creation of the desired
code-quantity. After the goal has been satisfied and information about the code-
quantity or expression has been placed Into MEANINGS, then its name is also used as
actual code.

In some cases what is described in the slot will be not just a simple variable name
or expression but a more extensive piece of code. When this occurs, another code
templ'ate may be invoked inside the first one, a process which can be nested arbitrarily
deeply.

A typical template for a DO loop might look as follows before the parameters are
plugged in:

DO "abe! for (parameter #1) loop" "variable for loop index” =
"begins at (parameter #2) loop" , "ends at (parameter #3)"

If the loop were to be used to go through an array, the template might look es
follows with the parameters substituted:

DO "label for go-through-array-L loop" “variable for loop index"
= "begins at beginning of L array” , "ends at end of L array”

Elements shown in bold-face, such as DO and =, are actual code elements which will
be put directly into the final code. Quoted items are descriptions of variables or

expressions; to generate the final cnde, the mechanisms that have been described
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previously must be used to substitute the actual elements for the description. When

this is done, the code that is generated might look like:

00 100 I=1,100

As specified in the theory, an effect is associated with each piece of code as it is
written. This linkage is accomplished within the production system itself. As each
template is used, one of the actions of the production is to place a copy of it with free
parameters instantiated into MEANINGS under the property, EXPRESSION; the
associated effect is put under the property, EFFECT. When code generation from the
template is completed, the effect is retrieved and placed into STM. Since it is still a
part of the MEANINGS structure, the effect also remains available for retrieval on other
occasions, such as while checking code or doing initializations.

Since in the protocols, subjects use the same sort of functional language for both
plans and effects, as has been mentioned, the same notational system that was
described in the section on plans is used in the model for both. The primary
distinction that may be made between the two is one of content; effects are usually
much more specific as to where and how the function is actually accomplished. A few
examples of effects, with explanations, are given below. It is worthwhile to compare
them with the plan examples given previously.

a. (BRANCH-IF ((EVEN PARITYX(LIST OF NUMBERSXPOINTER (NEXT 0DD)))
(GOTO (LOOP END;Y)

"It the element in the list of numbers which is pointer to by the pointer for the next
odd number was even, this branches to the end of the loop.”

b. (ORDERED (LIST OF NUMBERS) (LABEL (ORDER-LIST-LOOP-END)))
"At the label for the end of the list ordering oop, the list is ordered”
¢. (FOUND ((FIRST POSITIVE) (LIST OF NUMBERS))
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(LABEL (POSITIVE FOUND))
(ARRAY-ELEMENT (LIST OF NUMBERS)
(POINTER (FIRST POSITIVE))))

“At the label, the first positive has been found and is pointed to by the pointer.”

35 Processing Mechanisms

The model that has been presented so far may be characterized as follows: The
individual elements of the plan, expressed in the functional plans-effects language, are
placed one by one (by a production) into STM. Productions then fire oif which attempt
to convert these plan elements into to code using the information about language syntax
contained in the templates. As each piece of code is created the production system
assigns to it an effect which may then serve as part of the stimulus for further
productions. Information about the actual written code is accumulated in an LTM
structure, CODE. Information about the meanings which have been assigned to variables
and labels and the effects which have been assigned to code are accumulated in another
LTM structure, MEANINGS.

In the course of carrying out this cycle the production system uses five special
mechanisms which supply it information or operations that ere not otherwise
represented in the model. The following section deccribes each of these mechanisms

and explains why it is used.

3.5.1 Code Generation and CODE-GEN
The actual function of converting a tempiate into code is performed by a fucntion,
CODE-GEN, which is called as an action by various productions. The use of a separate

function for this operation, rather than performing it within the production system, is

more a consequence of the program structure than of psychological assertions of the
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model. The encoding of a template requires a great deal of use of the information

contained in CODE and MEANINGS. Direct retrieval from these structures by the
prodtfction system is involved and difficult to program properly; placing these actions in
a seperate function greatly reduced the effort involved in system construction.

CODE-GEN relies heavily on two other functions, PUTARG and CODE-EL. The first of
these, PUTARG, is responsible for instantiating the parameters in the templates. It does
this on a purely positional basis, assigning the first value to the first parameter, the
second to the second, etc. The only check it makes on the values is that they
correspond in number to the parameters.

CODE-GEN takes as its primary argument an instantiated template and tries to
convert this template into code and return its associated effect. It begins operation by
taking the clements of the template one at a time and passing them as arguments to
another function, CODE-EL. If the template element is an actual piece of code, such es a
DO or comma then CODE-EL returns it unaltered. If the template element is a variable
or expression description, then CODE-EL attempts to use the GETMEANING function to
retrieve from MEANINGS the actual code corresponding to the description. If it
succeeds, it returns the code as its value. If the variable or expression is an entirely
new one, then actual code for it will not be present in MEANINGS. When this happens,
CODE-EL fails and returns NIL.

CODE-GEN accumulates the actual pieces of code until the template is exhausted or
until CODE-EL fails. When the former occurs, CODE-GEN places both the accumulated
code and the retrieved effect of the template into STM as NEWCODE and EFFECT
elements respectively.

If CODE-EL fails, then CODE-GEN takes three actions; it places the code that it hes




accumulated so far into STM as a NEWCODE element; it creates a GOAL element in STM

for the template item that caused the failure; and it creates a CODE-GENERATION STM
element. The latter contains a copy of the template that CODE-GEN was encoding and o
pointer to the position in it at which the CODE-EL failure occurred; it's function is to
permit a return to generating code from the template once the goal has been satisfied
and is the equivalent of a higher node in a goal tree.

A fairly frequent occurence in the protocols is that the programmer writes some
new code that is a modification or replacement for some code that has been written
previously. In most cases, information about the old code is still preseni in STM and can
be used by the production system to make the modification or replacement. In a few
cases, though, the old code has been written long enough ago so that the information
about it is evailable only in MEANINGS and CODE. CODE-GEN checks for this situation by
using @ function, SIMILAR-EFFECT, which searches MEANINGS for similar, but not

identical, effects to the effect of the current template. "Similarity” is defined as:

1. Having the same verb as the current effect.

2. Having the same firct argument as the current effect.

When an old effect meeting these criteria is found in MEANINGS, CODE-GEN responds by
using @ function, RETRIEVE-CODE, to retrieve the code that was generateo from the
older template. A special element, (OLDCODE), which 1s « pointer to this existing code, is
then placed into STM along with each NEWCODE element. This OLDCODE element is used
by the production system to produce appropriate modifications of the older code.

A flow-chart of the operation of CODE-GEN is given in Figure 3.5.1.1.
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Flow Diagram for the CODE-GEN Function

1. Get effect of template.
FAIL, there is no effect.
1.1 Repcrt error and QUIT.
2. Get next code element.
FAIL, there are no more code elements.
2.1 Test for accumulated code.
YES, there is some accumulated code.
2.1.1 Perform write-out-new-code.
NO, there is no accumulated code.
2.1.2 Perform end-of-tzmplate.
3. Repeat until failure occurs:
3.1 Call CODE-EL with the next code element as argument.
3.2 Add what CODE-EL returns to the accumulated code.
4. After CODE-EL fails, test for accumulated code.
YES, there is accumulated code.
4.1 Perform write-out-new-code.
4.2 Create a CODE-GENERATION element.
43 QUIT
NO, there is no accumulated code.
4.4 Create a GOAL element.
45 Create a CODE-GENERATION element.
4.6 QUIT

Write-out-new-code.
1. Test if a similar effect already exists.
YES, it does.
1.1 Retrieve the code that went with it.
1.2 Set OLDCODE as a pointer to this old code.
1.3 Place an (OLDCODE) element into STM.
2. Place a NEW-CODE element containing the accumulated code
into STM.
3. QuIT

End-of-template.
1. Place any code conditions associated with the template
into STM.
2. Place the EFFECT of the template into STM.
3. QUIT
Figure 35.1.1
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Psychologically, the way in which this system generates code has importent
implications. First, a goal for the creation of a variable or expression is generated only
if the information is not already available from MEANINGS. The system is, thus, a seilf-
modifying or learning one which alters its own behavior over time.

Second, in coding the elements of a template, the system proceeds In a strict, first-
to-last fashion. Whenever a subgoal is created, whether from the template itself or
from some prior subgoal, it is attempted immediately. If any subgoal in a chain fails,
coding of the entire template fails Thus, there is no provision for defering goals, and

no back-up in a subgoal chain occurs.

3.5.2 Comparing Plans and Effects

comparisoi. between a part of a plan and the effect essigned to code generated
from the plan is an important feature of this model. These comparisons are performed
by the COMPARE-EFFECT function. A plan element and an effect are considered to
cerrespond if:

1. The function named in the effect indicates completion of the function
required by the plan. For example, LOOPED-THROUGH as an function in an effect
would indicate completion of LOCP-THROUGH in a plan. This correspondence is
determined from a table of equivalents in COMPARE-EFFECT.

2. The operands of the function in the plan must also be present in the
effect. Continueing the example, if LOOP-THROUGH has LIST-OF -NUMBERS as an
operand, then LOOPED-THROUGH must also have the operand for the two to
correspond,

It a plan and effect meet these criteria, they correspond. Any additional details
present in the effect are ignored.

COMPARE-EFFECT is called as part of the action side of productions. Depending on

wha! it returns, either a MISMATCH element is placed into STM or both plan and effect

elements are marked as OLD. A non-branching production equivalent to the use of this




function would have been to do the comparison within the produciion system. The
drawback of this approach is that it would have required a large number of very
specific productions; to avoid this, the branching function departure from a pure

production structure was used.

3.5.3 Rehearsal and the LOOK-AT-CODE Mechanism

Because of the first in - first out operation of STM, the model asserts that STM
items which are not rehearsed are eventually lost off the end. To prevent loss of
needed information, either STM must be large enough so that an item is retained until
needed or a rehearsal strategy must be adopted which keeps the item at the front of
STM. The conditions under which rehearsal take place are, therefore, important in
determining the behavior of the mode! for a given STM size. The basic prerequisite
imposed by the model is that rehearsal of an item may take place only when the
presence of the item is part of the invoking condition of a production; the rehearsal is
then accomplished as one of the actions of the prcduction. This approach has the
desirable property that knowledge in STM which is actually used or "attended to" is
rehearsed and remains available over time while unused items are eventually lost -
"decay” - as a function of interaction.

While this mechanism works very well for most situations, it does run into difficulty
because of the structure of the CODE EM. If CODE were part of the production
system, then certain information would be rehearsed as a function of using it as part of
the invoking conditions of productions; for example, the information that a DO loop was
still open might be rehearsed by a production which caused the programmer to look at a
DO statement that he had written previously. Because CODE is not part of the

production system, either a very large STM must be used or a special rehearsal
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mechanism must be provided. Since a very large STM might distort other parts of the
model, the latter course has been followed.

The mechanism that has been selected is to provide a special STM item, (LOOK-AT-
CODE), whose presence is used to indicate certain accesses of the CODE EM. When it
occurs in STM the element may be responded to in two ways. One of these is to include
it as part of the invoking conditions for productions which rehearse appropriate STM
items, usually those associated with code that has already been generated; for example,
one such production would result in the rehearsal of any item associated with an open
DO-loop condition.

The other response to the LOOK-AT-CODE item is similar to Newell’s (1973) CALL
operator. A production sensitive to the presence of the item calls a special action
element which results in an interruption of the program and the return of control to the
user’s console. The user may then rehearse items or provide whatever other actions
re necessary and then continue program execution. This mechanism is provided for
tnose situations in which behavior is dependent on the contents of the CODE EM and
which can’t otherwise be included in the production system. An example might be
ehavior which is caused by the programmer’s noticing a certain variable name and
discovering that he has failed to initialized it. Since this mechanism is necessary only
for those few special cases, its use in the program is relatively infrequent.

As with all other STM elements, LOOK-AT-CODE is placed into STM by the
production system. The production which does this must be sensitive to situations in
which it is likely that CODE EM has been accessed. The situation that has been chosen
is the completion of coding of a template. An alternative choice would have been to

invoke the production every time a new piece of code was generated; however, since

58




creation of new bits of code is a very frequent event, this would have meant that the
program would hive spent most of its time processing LOOK-AT-CODE items and that
considerable space in STM would have been taken up by them (with the effect of
pushing other items off of the end). The effect of this compromise is a slight loss in
the censitivity of the system to some of the finer aspects of behavior driven by the
contents of CODE. An example might be a cace in the protocol in which an error is
made and responded to before the coding of an entire template is completed; because of

this compromise, the model would only be able to make the co/rection after cornletion

of the entire template.

3.5.4 Modifying Code and HOW-MODIFY

The usual action of the production system as each new piece of code is generated is

to add the new code onto the end of the CODE EM using the ADDCODE function. As was
discussed briefly in the description of the CODE-GEN function, in may cases the new
code is intended to modify some previous code and is to replace the previous code or
be inserted before it. Indication that this is the case may come from the production

system (frequent case) because it has just discovered that a piece of code gives a

wrong effect or via the SIMILAR-EFFECT function in CODE-GEN (infrequent event). In
both cases the following process takes place, either within CODE-EL or as an action of

the production system: The effect of the older code is passed as the argument to a

function RETRIEVE-CODE, which uses GETMEANING to retrieve the instantiated template

which was usea to create the code in the first place. Once the template is retrieved,

RETRIEVE-CODE uses CODE-EL to turn the template into code again; since the code has

been created previously al the necessary information to do this is already in

MEANINGS. The OLDCODE elemant is then set as a pointer to this old code and placed
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into STM. (The actual value of the identifier, OLDCOODE, is all the code in CODE up to the
piece'that is to be replaced or modified.)

To actually modify the code, a special function, HOW-MODIFY, is provided.
Motivation for creation of this function was that there are many ways in which code can
be modified. If there is enough room, the new code may be inserted before the old
coce; alternatively, the old code may be crossed out and the whole thing recopied. If
the old code is written lightly enough, he may just write over it. Because the action
taken depends on such things as how much space he has left on the page, how dark his
pencil lead was, etc., no attempt was made to simulate this behavior in the protocol.
Instead, as the newer code is created, a production sensitive to the presence of both
OLDCODE and NEWCODE elements in STM is fired. One of the actions of this production
is to call HOW-MODIFY which returns control to the operator’s console so that he may
specify whether the new code is to be inserted before, replace, or be inserted after the
older code. Other productions then use this information to call on ADDCODE end

MODCODE to make the appropriate changes in CODE.

355 Generating Names: NEWQUAN

In order for the model to satisfy GOALS for variables and labels, it must have
available the FORTRAN names that are to be used in the program. The productions that
satisfy these goals obtain these names by calling the function, NEWQUAN. The first
argument to this function is the meaning of the code-quantity whose name is desired;
the second argument is the type of the code-quantity. A third argument is present only
if the code-quantity is of type LABEL. Since labels in FORTRAN are numbers, it indicates
the relative increment of the new label over previous nes.

In the protocols, the names given labels seem to follow a regular pattern. Labels
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for loops containing only a few calculations increase by 10 for each new label; that is,

successive labels of this type would be 10,20,... Labels for loops containing many
calculations, particularly other nested loops, increase by 100. When labels of the first
type occur inside labels of the second type, they increase by 10 starting from the outer
label, as in 110,120,.. Finally, there are a few occurances of very large loops that
contain large cegmen's of program inside them; they have numbers like 500,1000 etc.
To generate new labels, NEWQUAN maintains two counters, OLD-SMALL-LABEL and
OLD-LARGE-LABEL, which are, respectively, the values of the last small and large labels
to be used. When a new small label is requested, the first counter is incremented by 10
and the new value returned as the new label. Similarly, for a new large label, the
second counter is increased by 100 to get the next label; at the same time, thoug, the
small label counter is set to the new value of the large label counter so that any
successive new small labels will be larger than the new large label. Finally, for new
very large labels, 500 s added to the current value of the large-label counter.
Unfortunately, the generation of names for variables by the subject is not nearly as
systematic as that for labels. Instead of attempting to generate them, NEWQUAN uses
one of two methods to retrieve them, The first is to search NAMES-LIST, a list of
meaning-names pairs that is “plugged into” the program whenever these names will be
used. If a needed meaning-name pair is not found in this list, then the second method
which NEWQUAN uses is to ask al the user’s console for the names. The generation of

names is, thus, not really part of the model, but is effectively a parameter to it.

3.5.6 Symbolic Execution and the Structure of the Model
In the presentation of the theory in Chapter 1, it was asserted that creation of

program code was accomplished by symbolic execution; yet, the model just presented
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does not contain symbolic execution as an explicit construct - i.e., there is no single
routine that can be pointed to as the symbolic execution routine. Instead, symbolic
execution is present implicitly, as a function of the interaction of the routines end
structures of the model. This can be illustrated using the example of code generation
for the problem of printing out all the odd numbers ina an array. The plan for the
program might begin with "loop through the array.” A production sensitive to th.: plan
would fire off which would retrieve an apprupriate template, instantiate it, place
information about it into MEANINGS, and finally call CODE-GEN to code it. This process
is equivalent to the laying-out of code in symbolic execution. When the template is
coded, its effect is placed into STM, corresponding to the assigning of effects or
consequences in the theory. Finally, the presence of the effect in STM serves as part
of the invokiing conditions for a production for the next step in the plan, corresponding
to the statement of the theory that effects or consequences of one piece of code are
used to generate the next piece. Viewed across the entire system, this example makes

clear that symbolic execution is an inherent property of the model.




Application of the Model to the Protocols
Covelopment for Segments of the Protocols

Using the structures and mechanisms described in the previous chanter, the model
was developed to fit the coding behavior seen in segments of four protocols. These
tour segments were selected from the 42 coding segments in the 23 protocols in the
tollowing way: First, of the 23 protocols, a set of 7 (WILLIAM, CARL, PAUL, ROBERT,
KEVIN, FRANK, ALLAN) were set aside for use in verifying the model; they were selected
because, as a set, they had approximately the same distribution of solution times as the
entire set of 23.

A second criterion was the - applied to the coding segments in the remaining 16
problems: All those segments which consisted primarily of symoblic execution of code
that had been written previously, as would be the case, say, in going back to do
initializations, were eliminated. The reason for doing this was that behavior in those
segments would depend heavily on retrieval from the CODE EM. Because of the
simplified structure used for this EM, this would necessitate a grest many calis to the
operator’s console for information. Since the information supplied would have a great
deal of influence on system behavior, evaluation of the behavior produced by the mode!
alone would be made more difficult. From the segments remaining, the four segments
from four different protocols were chosen; particular selection were based on the
individual characteristics described in the discussion of each segment,

A single production system and set of templates (i) was used for all four segments;

(i) i, Some productions and templates are used in all four segments, though

there are idiosyncratic productions.
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this production system and the templates are shown in Section 1 of Appendix 3.

Difterent plans were used for each individual segment. Additionally, at the beginning of
each segment, MEANINGS was assumed to contain only the information about the arrays,
L and M. The following section discusses the behavior of the system for the first

problem in complete detail and an overview of system behavior for the other 3

problems,

4.1 Problem RICHARD

Problem RICHARD was the eleventh program done by the subject. It was one of the
shorter problems in the set, taking only 13.3 minutes to write and 3.0 minutes to debug
and run. The problem was to find all the odd numbers in the array, place them at the
beginning of the array, and set the elements in M corresponding to the final positions of
the odd numbers to 1. The complete protocol is given in Appendix 2.

It was selected for modeling primarily on expositional grounds. The problem is easy
to understand, is not subject to many conflicting interpretations and is readily solvable
by most people with programming knowledge. The subject takes only a moderate
amount of time to solve it, and his solution in the protocol is quite easy to follow. Since

it is an easy problem to explicate (though not necessarily to model) it was chosen as the

first problem to be modeled by the program.

4.1.1 Plarning in the Protocol

Planning begins very quickly after the subject receives the problem description; it

takes place in lines 8 through 12 of the protocol (i.e., about 30 seconds after he
receives the problem description):

$8:GO THROUGH THE ARRAY

S9:DETERMINE IF A NUMBER'S ODD OR NOT

S10:HAVE A POINTER TO THE LAST PLACE WHERE THERE'S NOT AN

S11:TO- IF IT’S RIGHT AT THE BEGINNING THEN YOU KNOW HOW FAR YOU HAVE
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q
S12:0N ODD AND HOW FAR YOU HAVE ON EVEN

Since this is the only identifiable planning behavior seen in the protocol, it is
assumed that planning was completed in this segment and that this same plan was used
without modification throughout the writing of the entire program. From this segment it
can be determined that the plan consists in part of iooping through the array, testing
each number, and keeping a pointer to the last position at which a non-odd occurs. In
lines 16-18 he says:

S16:IT’S A POINTER FOR NEXT QDD

S17:NEXT ODD
] S18:AND THE OTHER ONE IS JUST GOING TO GO THROUGH THE ARRAY SO

This indicates that the plan actually consists of keeping two pointers, one for the
position at which the next odd is to be placed and one which goes through the array
pointing at the next element to be tested. Finally, as he is checking over the program
in lines 52-59, he comments:

1 $52:50 THAT ALL ODD NUMBERS ARE AT THE BEGINNING
i S53:PLACE ONES CORRESPONDING POSITIONS IN M

| SS54:AND THAT

} SSS:INITIALLY IF | EQUALS ONE

S$56:THEN WE DON'T EVEN HAVE TO WORRY ABOUT IT
S57:AHH, SO WE'LL JUST DO THAT SWITCH

S658:RATHER THAN TEST IT EVERY TIME THROUGH THE LOOP
S59:AND THAT JUST WON'T HURT ANYTHING

From these comments and from the code he actually writes, it may be inferred
that, once he has found an odd number, he interds to increment the pointer to the next

odd, swap the odd number with the element pointed to by the pointer to the next odd,

and then set the corresponding element to 1.

Re-written as a sequence of actions to be performed, an informal statement fo the

plan would be:




1. Create a pointer to the next odd number, starting out at the beginning of the
array.
oop through the array,
est each element to see if its odd. If It Is,
Increment the pointer to the next odd.
Swap the element it points to with the element that was just found to be
odd, which was pointed to by the loop index.
Set the corresponding element in M to one.

2. L
s. T

The indentation of part of item 3 is used to indicate the subject’s knowladge that these
actions are to be performed only it the test is satisfied.
In the program, this plan is represented as follows (Fach numbered item is a

separate element of the plan.):

1. (CREATE (POINTER (NEXT ODD)) (BEGINNING (LIST OF NUMBERS)))
2. (LOOP-THROUGH (LIST OF NUMBERS))
3. (IF ((EVEN PARITY)
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))
(GOTO LOOP-END))
4. (BEGIN! (NOT-EVEN-PARITY))
5. (SWAP-AND-INCREMENT
((ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS) (POINTER (NEXT ODD))))
(POINTER (NEXT ODD)))
6. (SET (ARRAY-ELEMENT (AUXILLARY ARRAY) (POINTER (NEXT ODD)))
1)
(END! (NOT-EVEN-PARITY))
(END! (LOOP-THROUGH))

N

The (BEGIN!) and (END!) elements have the same significance as does the indentation in
the previous representation of the plan.

Interpretation of this representation is quite simple. The first word indicates the
general zction tc be performed - SET, IF, SWAP, etc. Following it are the objects of the
action with all the information belonging tc an individual object grouped together within
parentheses. Thus, (POINTER (NEXT ODD)) describes a pointer to the next odd number.

Elements of arrays require two pieces of information, the name of the array and the
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name of the pointer indicating the specific element; for example, (ARRAY-ELEMENT (LIST

OF NUNMBERS) (VARIABLE (LOOP INDEX))) specifies an element of the array containing
the list of numbers which is pointed to be a variable which is the loop index.

comparison between this representation of the plan and the informal one reveals
that, despite syntactic differences, the two both contain the important features of the
plan in this problem: both use an array as the primary data structure, two pointers to
keep track of positions in the array, and iteration construct to step the pointers through
the array.

Important to what is meant by a plan and by code generation in this model is what
this plan omits which the code generation process supplies. First, though trivial, the
plan has a different syntax and set of semantic conventions than does the final code.
Second, the plan omits any operations which are necessary to create, label, and initialize
data structures; in this case, the plan does not gives names to the array and the two
pointers nor does it provide the DIMENSION declaration which is necessary to use a
FORTRAN array. Third, the plan does not provide the mapping between the operations
that are to be performed and the available constructs of the language; in this example,
the plan provides no way of getting from the "swap” operation to the sequence of three
assignment statements that are actually necessary to implement the operaiion in
FORTRAN. Finally, the plan provides no information on how to perform whatever
transformations may be necessary to go from the control structure of the plan to the
control structure actually used in the program; in this case, it does not supply the
information on how to go from the block structure used in the plan to the necessary
sequence of FORTRAN GOTO statements. Supplying all the information that is omitted by
the plan itself is the justification for the use of the complex problem-solving structure

for code generation that was described in the previous chapter.
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4.1.2 Operation of the Program for Lines 13-60

Lines 13-60 of the protocol consist of only code generation, and they have been
simulated using the model. A complete trace of the model’s behavior is given in Section
4 of Appendix 5. At the beginning of the segment, it is presumed that the subject has
available the plan just described. In addition, he already has some information about
two of the data structures he will use in the prog-am, the two arrays, L and M. This
information was acquired from the problem instructions read by the subject while doing
problem HENRY, the first problem in the set; it’s retention for application in this
problem can be inferred from its use th-oughout the program. In the program, this

knowledge is presumed to be stored in the MEANINGS structure in the following form:

1. (MEANS (LIST OF NUMBERS)), (IYPE ARRAY), (LENGTH 100), (NAME L)

2. (MEANS (AUXILLARY ARRAY)), (TYPE ARRAY), (NAME M), (LENGTH 100))

The first line is the set of attribute-value pairs that describe L; the second line is
the set for M. They indicate that the first quantity MEANS LIST OF NUMBERS, that it is
of TYPE ARRAY, LENGTH 100, and is called L , in the program. and that the second
quantity MEANS AUXILLARY ARRAY, is of TYPE ARRAY, is called M in the program, and is
of LENGTH 100.

Plan element 1 specifies the creation of a variable which is a pointer to the next
odd number and which has an initial value equal to the beginning position of the list of
numbers. When this plan element is followed, it has two major effects: the creation of
an entry in meanings for the pointer and the generation of code to initialize the pointer
to 1. The generation of this code by the subject may be seen in lines 13-23 of the
protocol:

S13:50, POINTER ONE
S14:POINTER ONE IS A POINTER TO
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A15:[WRITES PTR1]
$16:1T’S A POINTER FOR NEXT ODD
$17:NEXT 0DD

S18:AND THE OTHER ONE IS JUST GOING TO GO THROUGH THE ARRAY SO
S19:I'LL JUST WRITE THIS NEXT QDD

S20:START OUT AND

A21:[WRITES NEXTODD=1]

S22:POSITION ONE LET’S JUST SAY

$23:D0 10 | EQUALS

(Note the change in the name the subject gives to the pointer between lines 13-15 and

the remainder of the segment; as was mertioned previously, no attempt was made by

the program to model this behavior.)

When the system begins operation to produce this same code, STM is presumed to

have the following contents:

Pa—

- (PLAN-ELEMENT (CREATE (POINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS))))

2. (CODE)

3. (MEANINGS)
4. EMPTY

5. EMPTY

6. EMPTY

7. EMPTY

8. EMPTY

9. EMPTY

10. EMPTY

11. EMPTY

12. EMPTY

13. EMPTY

14. EMPTY

"EMPTY" is used to indicate STM slots containing material irrelevant to the programming

task.

The first element of STM is the first element of the plan. The next two elements are

pointers to the CODE and MEANINGS structures respectively. '

The first production to be invoked is PLAN-CREATE-POINTER-1. Its invoking
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condition is the presence of an element in STM which matches the pa‘ttern, (PLAN

(CREATE (POINTER sRESTuls) tRESTu2s)). A verbal statement of this pattern is "any
PLAN which calls for creating a pointer described by what matches $RESTsls and
initializing it to whatever matches sREST#2¢."

The production has three actions. The tirst of these is to use the function,
NEWMEANING, to add the following group to MEANINGS:

(MEANS (N T ODD)), (TYPE POINTER), (NAME NEXTODD)

Since no second argument ic supplied, this entire list is added to MEANINGS as a single
group.

The second and third actions of this production begin the generation of code to
initialize the pointer. The second action has two parts: first, it takes a template for
setting two things equal and uses PUTARG to instantiate it by plugging in (POINTER
(NEXT ODD)) and (BEGINNING (LIST OF NUMBERS)) as parameters. Before this
instantiation tihe template looks as follows:

(¢sGETARGs 1) = (sGETARG~ 2) (NEWLINE)

After instantiation it appears as:

(POINTER (NEXT ODD)) = (BEGINNING (LIST OF NUMBERS)) (NEWLINE)

Once it is instantiated, the second part of the action is to call NEWMEANING to add the
template along with its effect to MEANINGS to give the following group in MEANINGS:

(EXPRESSION ((POINTER (NEXT 00D)) = (BEGINNING (LIST OF NUMBERS))
(NEWLINE)))

(EFFECT ( EQUAL (POINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS))))

70




The final action of the production is to apply the code generation function, CODE-
GEN, to the instantiated template 'n order to produce the actual code. As described
previously, CODE-GEN proceeds by passing the elements in the template one at a time
to CODE-EL. The first element in the template is (POINTER (NEXT ODD)). Since this is
not an atual code element, CODE-GEN calls GETMEANING, with arguments of (TYPE
POINTER) and (MEANS (NEXT ODD)), to search for a name for the item in MEANINGS;
since the quantity has already been created, it finds an entry for it, and returns the
name, NEXTODD. CODE-EL passes this back to CODE-GEN, which adds it to the buffer of
code being created. The next element in the template is "=". Since this is a piece of
actual code, it is returned by CODE-EL unchanged and is added directly to the buffer for
code being created.

The third element in the template is (BEGINNING (LIST OF NUMBERS)). As in the
case of the first element, CODE-EL calls GETMEANING to find whether the requested
quantity is available from MEANINGS. Since it is not, CODE-EL reports back failure (NIL).
CODE-GEN responds to this failure by creating two new STM elements and then
returning.

These new elements are

(NEW-CODE (NEXTODD =))
(CODE-GENERATION TEMPLATE-1 POSITION-1 SIGNALS-1)
The first of these contains all the new code that was in CODE-GEN's buffer; the second
contains the status of CODE-GEN at this point and corresponds to a node in a goal tree.

The next production that is invoked is NEW-CODE-3. Its invoking conditions are the
presence of elements matciing the patterns:

(NEW-CODE +ANY+)
(PLAN-ELEMENT *REST*)

(MEANINGS)
(CODE)
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In addition to rehearsing the PLAN-element, CODE, and MEANINGS, it has two other

actions. The first is to call the ADDCODE function on the new code contained in the
NEW-CODE element; this function adds the new code onto the CODE structure. The
second action is to call the REPLACE function, described In the section on STM
structure, to change the word, "NEW-CODE," in the first element to "OLD-CODE.*

When this production is completed, the CODE-GENERATION element left in STM by
the previous production, the CODE and the MEANINGS elements, and the absence of any

GOAL elements together serve as the invoking conditions for the production, CONTIN.Y -

CODE-GENERATION-1. This production marks the CODE-GENERATION element as an OLD-

CODE-GENERATION and calls CODE-GEN with the remainder of the template at the point

at which coding was interrupted. This time when CODE-GEN encounters the (BEGINNING
(LIST OF NUMBERS)) element it creates the new STM elements:

(GOAL (BEGINNING (LIST OF NUMBERS)))

and

(CODE-GENERATION TEMPLATE-2 POSITION-2 SIGNALS-2)

At this point, STM appears as:

1. (CODE-GENERATION TEMPLATE-2 POSITION-2 SIGNALS-2)

- (GOAL (BEGINNING (LIST OF NUMBERS)))

. (CODE)

. \MCANINGS)

- (PLAN-ELEMENT (CREATE (POINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS))))

. (WRITTEN-CODE (NEXTODD =))

. (OLD-CODE-GENERATION TEMPLATE-1 POSITION-1 SIGNALS-1)

. EMPTY

9. EMPTY

10. EMPTY

11. EMPTY

12. EMPTY

13. EMPTY

14. EMPTY

gbwWN
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Note the presence of the CODE-GENERATION and OLD-CODE-GENERATION elements

which perform the equivalent of a goal tree for code generation by indicating that

coding of a template is still incomplete.

A production, GOAL-BEGINNING-1, has as its invoking condition the pattern, (GOAL
(BEGINNING *REST#)), which is matched by the GOAL element in STM. It has two main
actions. The first is to call NEW-MEANING with (BEGINNING 1) as its first argument and
(MEANS (LIST OF NUMBERS)) as the second; the use of the second argument has the
effect of causing the first attribute-value pair to be added to the same group as the
second pair or set, rather than creating a new set. This means that the information that

the array begins at | is added to the information in MEANINGS about the array, L. The

entire entry in MEANINGS now is:

(MEANS (LIST OF NUMBERS))
(TYPE ARRAY)
(LENGTH 106)
: (NAME L)

(BEGINNING 1)

The second action is to add the element, (NEW-CODE 1), to STM. The conditions

for invoking NEW-CODE-3 are then met; it adds the 1 to the CODE structure.

Once this GOAL is satisfied, encoding of the template is completed, and the effect

associated with this code is retrieved by CODE-GEN (using the function, GETMEANING)

and placed into STM as an EFFECT element. STM has the following appearance after all

the code that has been generated is written out into the CODE EM:

1. (CODE)

2. (PLAN-ELEMENT (CREATE (PGINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS))))

(WRITTEN-CODE (CRLF))

(EFFECT (EQUAL (POINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS)))

(MEANINGS)

(WRITTEN-CODE 1)

(OLD-GOAL (BEGINNING (LIST OF NUMBERS)))

Eal

o

73




8. (OLD-CODE-GENERATION TEMPLATE-2 POSITION-2 SIGNALS-2)
9. (WRITTEN-CODE (NEXTODD =}

10. (OLD-CODE-GENERATION TEMPLATE-1 POSITION-1 SIGNALS-1)
11. EMPTY

12. EMPTY

13. EMPTY

14. EMPTY

CODE now contains:

NEXTODD = 1

The production that will be evoked under these conditions, EQUIVALENT-EFFECT-1,
calls the COMPARE-EFFECT function to determine if the effect of the code is the one
desired for the current plan element. Since it is, the production system will place the
next plan element into STM.

Summarizing the operations performed by this sequence, it creates the line of code,
NEXTODD=1, and assigns it an effect. In the course of doing so, two goals are created
and satisfied, one for the variable name, and one for its initial value. Comparing this
with the subject’s behavior in lines 16-21, the same basic elements are seen. Line 16
contains the subject’s generation of the name; line 22 reveals generation of the initial
value from information about the "list of numbers" array; and, line 21 shows the
subject’s generation of the code itself.

The next plan element calls for looping through the list of numbers. The
corresponding segment in the protocol is:
$23:D0 10 I EQUALS
S24:LET’S MAKE THIS A 20

A25:[WRITES DO 20 1=1,100]
$26:1 EQUALS ONE TO 100

Coding of this plan element follows the same basic outline as for the first one. Two
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goals are generated and satisfied, one for a label for the end of the loop and one for
the loop index. The code that is generatec is:

DO 10 I=1, 100

In the protocol, the subject first writes this code the same way the program does,
but then changes tiie label io 20. The change does not appear to be motivated by the
achieved or desired effect of code, but, rather, by the subject’s naming cornventions.
Since, as discussed in the section on NEWQUAN, the model does not include this naming
behavior, the «ubject’s labe! alteration is not followed by the model.

As with the previous template, completion of coding results in the placement of the
effect of the code into STM. Additionally, in this case, an element of the following form
is placed in STM:

(CODE-CONDITION (OPEN-DO-LOOP (LABEL (LOOP-THROUGH

(LIST OF NUMBERS)XLOOP-THROUGH(LIST OF NUMBERS))))
It represents the programmer’s knowledge, shown in lines 50-51 of the protocol, that
the DO loop he has just created is still open.

If this element were not rehearsed, it would eventually be driven off the end of
STM; this would correspond to the error situation in which the programmer forgets to
terminate a loop. In this case, the LOOK-AT-CODE inechanism described previously is
used to prevent this situation from occuring by a.suming that the item is rehearsed
whenever the programmer sees the DO statement in the written code.

Following the plan element for looping is one that calls for performing a test
operation on 'the element of the array pointed to by the loop index. Coding begins by
invoking PLAN-IF-1 which responds to STM elements matching the patterns, (PLAN-

ELEMENT (IF #RESTs#)) and (OLD-PLAN-ELEMENT (LOOP-THROUGH #LIST#)). This

7

— " . B T L T . o =

N

NPT LT




production has three actions. First, it rehearses the element which matched the first
pattern. Second, it calls NEW-MEANING to place the instantiated template, IF-1, and its
effect in to MEANINGS. (The instantiation is accomplished as part of the argument to
NEW-MEANING. Third, the production calls CODE-GEN with the instantiated template as
its argument.

Coding of this template proceeds in the same general manner as has been described
previously. Noteworthy is the creation of a goal, (GOAL (TEST ((EVEN PARITYXARRAY-
ELEMENT (LIST OF NUMBCSS) (VARIABLE (LOOP-INDEX)))), for the test inside the IF
statement. This goal matches the pattern, (GOAL (TEST ((EVEN PARITY) *RESTs))) and
invokes the production, GOAL-TEST-EVEN-PARITY, which creaies the code for the test.
Coding of the remiinder of the IF statement then follows. When this is complete, tha
plan element is also completed.

The equivalent benavior on the part of the subject appears in lines 27-32 of the
protocol:
$27:IF THE THING IS ODD -IF
S28:L S'JB | DIVIDED BY TWO TIMES TWO EQUALS L sUB |
S29:THEN WE WANNA SAY
$30:GO TO 20
A3 1:[WRITES IF(L(I)/2¢2=L(1))GO TO 20)

S32:IF IT'S NOT 0DD

Note that generation of the test for the IF statement appears as a separate line in
the protocol because the subject breaks off a previous phrase before stating the ¢ude
for it. This suggests that the subject also treats creation of the test as a separate goal
from the rest of the IF statement and that the model accurately reflects his behavior,
(This 'separation appears even more clearly in two of the other segments modeled by

the program.)
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After completion of the plan element for the test, the next element in the plan is a
special BEGIN! marker; it ropresents the subject’s knowledge, as seen in lines 33 and 34

of the protocol, that the following calculations are a group that is performed only if the

number is odd.

S33:S0 IT IS 0DD
S34:AND IF IT IS ODD

No code is generated from it, but it does cause the rehearsal of any CODE-

CONDITION elements which are in STM.

Within the group that the BEGIN' marker initiates, there are two other plan elements.
The action of the first of these is represented as SWAP-AND-INCREMENT. Though two
distinct functions are named, they are represented as a single, compound action since

the subject appears to treat them this way; in lines 35-47 of the protocol, generation of

the code for the two functions is intermixed:

S35:THEN WE'LL SAY SWITCH IT WITH NEXT ODD
S36:PUT A ZERO HERE

A37:[CHANGES NEXTODD=1 TO NEXTODD=0]
S38:AND WE'LL SAY K EQUALS L SUB |
A39:{WRITES K=L(])]

S40:L SUB I EQUALS

S41:L SUB NEXT ODD

A42:(WRITES L(I) =L(NEXTODD)]

S43:L SUB NEXT ODD - NO NEXT 00D

S44:NEXT ODD EQUALS NEXT ODD PLUS ONE
A45:[INSERTS NEXTODD=NEXTODD+1 BEFORE K=L(1)]
S46:NEXT ODD L EQUAL K

A47{WRITES LINEXTODD)=K]

In order for the SWAP-AND-INCREMENT operation to be performed properly, a
necessary prerequisite is that NEXTODD have the proper initial value. In other
situations, this value might be determined by first writing the code for the operation

and then symbolically executing it for the case in which the first two elements of the
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array are to be swapped; in this case, however, the subject apparently is aware, before

the rest of the code is written, that NEXTODOD should initially be 0. He therefore goes
back to the beginning of the program where he has written NEXTOOD = 1 and re-writes
it as NEXTODD = O (in lines 36-37 of the protocol).

This ability to re-write incorrect code is provided for within the program; every
time CODE-GEN ic called with a new template, it uses a function, SIMILAR-EFFECT, to
check whether the effect of the new template matches the effect of a previous template
stored in MEANINGS in certain ways. It it does, then is assumed that the code
generated from the new template is intended to re-write the older code. In this case,
the two effects are:

old: (INITIAL{ZED ((POINTER (NEXT ODD)XBEGINNING
(LiST OF NUMBERS))))

new: (INITIALIZED ((POINTER (NEXT ODD)) 0))

It the effects do match, then CODE-GEN places a pointer to the older code into STM
in the form of an element, (OLDCODE). As each piece of code from the new template is
placed into STM, a production, NEW-CODE-1, uses the function, HOW-MODIFY, to
getermine how the new code is to modify the older code, whether it should replace it,
be inserted before it, or be inserted after it. One of the 3 productions, REPLACE-CODE -
1, INSERT-BEFORE-1, and ADD-ON-CODE-1, then makes the modification and updates the
OLDCODE pointer. In this problem, CODE-GEN first produces (NEWCODE (NEXTODD = 0))
and (OLDCODE). NEW-CODE-1 calls HOW-MODIFY and changes the first element to
(REPLACE (NEXTODD = | CRLF) (NEXTODD = O CRLF)). (The "CRLF" stands for “carriage
returi - line feed " and is used to indicate the end of a line in the code.)

Once NEXTODD has been properly initialized, the subject begins to write the code
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for interchanging the two elements of the arrays, in lines 38-47. In the course of doing

s0, he discovers that he has not incre mented NEXTODD, and he interrupts writing the
code for swapping the elements to insert NEXTODD = NEXTODD + 1 before the swap.
There is no evidence in the protocol that his discovery was the result of attempting to
execute tha code for some particular value of NEXTCDD. Instead. it seems to have come
about as a result of his using the name, NEXTODD, which served to remind him that he
had not yet written the increment statement.

Since the behavior comes about as a consequence of seeing something in the
written code, the program uses the LOOK-AT-CODE mechanism to simulate this
behavior, but because the LOOK-AT-CODE element is placed into STM only when the
entire template is completel, the simulation is not exact. As soon as the code for the
entire swap of the array elements has been written out into CODE, an element is
introduced into STM via the LOOK-AT-CODE device which indicates that NEXTODD has a
value of 0 and cannot be used as a subscript. This condition causes a production,
REPLACE-CODE-1, to be invoked which uses the code re-writing mechanism described
previously to insert the code. Thus, in the program, the modification to the initialization
of NEXTODD takes place after, not during, the writing of the swap code.

At this point, the code appears as

NEXTODD = 0

DO 100 1=1,100
IF(L(D.EQ.L(I)/2 & 2) GOTO 10
NEXTODD = NEXTODD + |

K = L(I)

L(I) = LINEXTODD)
L(NEXTODD) = K

After the SWAP-AND-INCREMENT has been completed, the next plan element calls

for setting the corresponding element in the M array to one. The subject does this as
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a single operation with no evidence of creation of a new variable name or other

subgoals:
S48:AND M SUB NEXT ODD EQUALS ONE
A4S:[WRITES M(NEXTODD)=1]

Similarly, in the program, the creation of code for it is also very straight-forward.
It is done completely by PLAN-SET-EQUAL-1 which eicodes the 'emplate, EQUAL-1. No
other subgoals or productions are involved.

The final element of the plan is the END' that closes the block of code following the
IF statement. A production, PLAN-END-CODE-CONDITION-2, sensitive to the conjunction
of an END! element and a CODE-CONDITION of OPEN-DO-LOOP, then creates the
CONTINUE statement which closes the loop and completes the program. The
corresponding behavior on the subject’s part is:

$50:20 CONTINUE
AS1:[WRITES 20 CONTINUE]

The final program is:

NEXTODD = |

DO10I=1, 100
IF(L(I)/2+2.EQ.L(I))GOTO {0
NEXTODD = 0
NEXTODD = NEXTODD + 1

K=L(I)

LCI)=L(1)

L(I)=K

M ( NEXTODD ) = 1

10 CONTINUE

It differs from the subject’s code only in the I-Uel names.
In gaining an overview of the relationship between the model trace and the

protocol, it is important to note the level at which comparison is appropriate. No
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attempt was made to achieve correspondence at the level of a production for each word
or phrase; instead, the mode! is intended to reproduce just two characteristics ot the
coding behavior: (1) the overall order in which code is created and (2) the size of the
units in which it is created, defined in terms of what is accomplished by single
operations. From this perspective, the model fits the protocol reasonably well. With
the exception of the problem in incrementing NEXTODD caused by the LOOK-AT-CODE
mechanism, the order of code generation by both the subject and the model match.
Additionally, the unit sizes also match well. Both the subject and the modei create the
IF statement as two distinct pieces of code while the swap operation is a single piece
even though it takes several lines in the program. Both also store and retrieve some of
the same information about code quantities since both set the corresponding element in
M without creating new goals for information about variable names. Thus, when
compared at the leve! of code generation order and unit size, the model adequately

reproduces the important characteristics of the subject’s behavior.

4.2 Problem LEE

Problem LEE was the 19th problem done Ly the subject; the complete protocol is
given in Appendix 2. It l'es below the median in writing time but it took a longer than
average time to debug and run. The task was to find all sets of numbers such that ali
members of the set were multiples of the smallest member in the set, excluding one and
zero from tive sets. The sets were then to be placed at the beginning of the array, and
the corresponding positions in the M array for the first set were to be set to one, the
second set to two, etc.

This problem was selected for modeling because, for the theory, it is almost a

classical one; not only are all three of the processes of the theory explicitly visible in
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the protocol, but considerable interaction among the processes may also be seen. The
three processes occurred in the following order:

lines 1-51 Understanding

52-66 Planning
67-140  Coding
141-179 Planning
180-387 Coding

As can be seen, the Understanding process at the beginning of the protocol is a
quite protracted one. The main issue which consumes this effort is how to handle
negative numbers. If the problem is interpreted so that their actual, rather than
absolute, value is used, and " .ltiples" is interpreted as meaning "multiplied by a
positive number,” then each negative number would form a set by itself. Since thls
seems pe uliar to the programmer, he attempts to verify that the interpretation is e
correct one by using information from a supplementary resource, asking the
experimenter. The experimenter leaves the interpretation up to the programmer; the
prograrmmer then decides to attempt to write the program using the interpretation in
which the actual values of negative rumbers are used.

Parenthetically, attention should be “rawn to the clear design-task characteristics of
the understanding process in this case. The basis on the which t-e interpretation of the
problem is questioned is the the programmer’s notion of vhat constitutes a suitable
problem; it does not scem reasonable to him that a correct interpretation of the problem
would result in many of the sets of multiples having only one member. A test for what
constitutes a “suitable” problem requires access to a wide range of diverse information.
The use of this "suitable” problem idea in the understanding process guarantees the
main characteritic of design tasks, the continuous introduction of new knowledge during

the course of problem solving.
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After the interpretation issue is clarified, an initial plan is created; as in problem
RICHARD, creation takes place rapidly with no evidence of extended problem-solving
activity. This initial creation is visible in lines 52-66 of the protocol; the plan conceived
in this segment is apparently the one used until the Planning segment that begins in line
141. From these lines alone, the plan consists of first ordering the numbers and then
going through and finding the multiples. From lines 94-95 in the Coding section, a more
elaborate statement of the plan can be inferred: First find a positive. If any negatives
are found, the corresponding positions in M are tc be set to 1, as is seen from lines
108-}1; and, if the loop terminates, then the program is done operating (from lines 112-
133). When a positive number is found, the plan is to check whether its successors are
positive; if they are, they are to be swapped with any non-multiples which lies between
the positive number and the multiple that has been found (from lines 119-124 and 132-
139 and 143 in the next planning section).

The complete plan at the end of ths first Planning section looks like:

1. Order the numbers.

2. Go through the numbers and find a positive one.

For each negative number found, set the corresponding position in M
to the value of the loop index.

If no positive numbers are found, then the program is done.

3. Test the rest of the numbers in the array to find whether they are
divisible by the positive number that has been found.

4. Keep a pointer to the first non-positive after the positive has been
found.

5. Each time a multiple is found, swap it with :he element that the pointer
poiits to and update the pointer.




Again, the indentation is used to indicate that operations are to be performed only if a

condition holds.

The program representation of this plan is:

. (ORDER (LIST OF NUMBERS))
- (FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS)))
. (BEGIN! (OTHERWISE))
. (SET (CORRESPONDING-ELEMENT (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))
(VARIABLE (LOOP-INDEX)))
. (END! (OTHERWISE))
- (END! (FIND-EXISTENCE-LOOP-THROUGH))
. (BEGIN! (POSITIVE-FOUND))
. (FIND-AND-SWAP
((MULTIPLE) (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
((LIST OF NUMBERS) (VARIABLE (INNER-LOOP-INDEX))))

HWN »—
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Note that the END! in item 6 does not have a corresponding BEGIN!. This is because
the FIND-EXISTENCE function in item 2 belongs to a class of items which open DO loops
and, therefore, act as implicit BEGIN's. (For a full list of this class, see Appendix 4.) The
BEGIN! in item 7 is unbalanced because the plan at this point is still incompletely
specified; the subject has still not decided what to do when all the multiples of the
number have been found. (As in the preceding problem, this plan is still quite far from

the eventual program. In particular, the plan uses a different set of operators and

operations than those available in FORTRAN, and it omits the naming, crealing, and
initializing of data structures.)

This plan as originally conceived will not work; interchanging elements which are
multiples with elements vhich are not destroys the ordering of the array. The subject
discovers this in the course of writing the code for doing the intercharge, in lines 129-

145 of the protoco!. How this discovery is made is not quite clear from the protocol,

since the subject writes very little of the code before making the discovery; however, it




is probably a reasonable inference that he partially generates and symoblically executes

the code without writing or vocalizing it. The symbolic execution reveals that, after

finding the first set of multiples, the array will no longer be in increasing order and that

he can no longer be sure that the next divisor he tries will be the smallest member in
the set.

Since the problem in this case lies in the plan and not just in the code that has been
generated to fulfill the plar, the planning processes is again invoked,; this is visible in
lines 146-179 in the protocol. His starting point in modifying the plan is an idea that
first appears in line 142 of the protocol: each time a multiple is found it is put in
position at the beginning of the array, anu all the non-multiples which preceeded it in
the array are moved up one place to preserve the ordering of the array. He uses a
diagram to verify and claborate this idea, and, at line 180, begins using it to generate
code.

Lines 180-302 are basically concerned with writing the code for finding the
multir‘es and shifting ‘her: to the head of the array. Beginning about line 303 he
begins to concern himself with terminating conditions. To generate the code for these,
he ajain symbolically executes the code that he has already written, this time using
various terminating conditions as the values for the execution; for example, in lines 303-
320 he symbolically executes a branch condition with values of greater than 100 for the
variable, NEXT. Once he has satisfied himself that the program works correctly for all

these terminating conditions, he is done with writing the code for the program.

4.2.1 Program Operation for Lines 52-14]
The program has been set up to operate for lines 52-141 of this protocol. This

segment begins just after the initial plan creation and ends with the discovery that the

= ‘zinal plan is inadequate.

R T —m—




|

The first element of the plan requires the ordering of the list of numbers. It is:
(PLAN-ELEMENT (ORDER (LIST OF NUMBERS)))

Compared to the other elements in the plan, it seems to be at a higher levei of
abstraction; howsever, there is no evidence in the protocol that it ever gets broken down
any further, and code is generated directly from it. A possible explanation is that the
subject has written the code for ordering numbers so often that it has become a
planning primitive for him.

In the model, this code generation is handled as a series of steps in which the effect
of one step, in combination with the plan, is used as the invoking condition for the next
step. The first of these steps is represented by:

(GOAL (LOOP-THROUGH ((LIST OF NUMBERS)XORDER (LIST OF NUMBERS)))))

which is interpreted as "goal for looping through the list of numbers as part of ordering
the list of numbers.” In response to this goal, a production is fired off which invokes
the CODE-GEN function with the template, LOOP-1. When coding of this template is
completed, it produces

D0 10 I=1,100

and leaves as its effect,
(EFFECT (LOOPED-THROUGH ((LIST OF NUMBERS{(ORDER (LIST OF NUMBERSH))
(LABEL (LOOP-THROUGH ((LIST OF NUMBERS)(ORDER (LIST OF NUMBERSH))
This is interpreted as "the effect is to loop through the list of numoers to order the list
of numbers, and the effect is complete at the label for looping through the list of

numbers to order them." The corresponding behavior by the subject is:

$67:00 100 I EQUALS ONE
$68:TO 100
A69:[WRITES DO 100 I=1,100])




The presence of this effect and the plan element in STM are invoking conditions for
a production which produces:

(GOAL (INNER-LOOP-THROUGH
((LIST OF NUMBERS,.(ORDER (LIST OF NUMBERS))))))

This is a goal for the production ot an inner loop that goes through the list of numbers.
In turn, this resuits in a call to CODE-GEN with the template, LOOP-2. The code

generated from it is:

00 10 J=1,100

This has as its effect,

(EFFECT (INNER-LOOPED-THROUGH
((LIST OF NUMBERSX(ORDER (LIST OF NUMBERS))))
(LABEL (LOOP-THROUGH (LIST OF NUMBERS))
(LENGTH (LIST OF NUMBERS))))

In the protocol this corresponds to:

$70:00

S71:J EQUALS I PLUS ONE
$72:100

A73:[WRITES DO 100 J=1,100]

While this is the correct effect for the goal, it is not the correct effect for the plan.
To order the numbers efficiently, the inner loop should begin at one past the current
position of the outer loop and should run to one less than the outer loop. In the
program, the subject sees this and corrects it in lines 74-78 of the protocol:
S740R 11
A75:[WRITES ABOVE SECOND DO, I1=]+1]
$76:J EQUALS 11

S$77:99
A78:[ALTERS SECOND DO STATEMENT TO READ, DO 100 J=11,99)
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In the program, the correction is accomplished by a production, PLAN-ORDER-
AFTER-WRONG-INNER-LOOP-1, which has as its in. oking conditions, the presence of a
plan element for ordering the list of numbers, the effect just given, and the absence of
of an effect of incrementing a pointe.r. The latter condition is equivalent to specifying
that the inner loop begins at one rather than beginning at a pointer which has a value
one greater than the index of the outer loop. This production has two main actions. One
of them is to use the OLDCODE mechanism to mark the DO lcop that was just written as
erroneous code which is to be replaced by new code. The second action is to introduce
into STM a goal for creating a pointer which would be equal to the value of the outer
loop index plus one. This goal appears as:

(GOAL (INCREMENT (INNER-LCOP-ORIGIN) 1))

This has the effect of creating a variable which MEANS INNER-LOOP-ORIGIN ana then
creating the code to increment it by one.

The effect of this code and the plan element then serve as conditions for a
production, GOAL-LOOP-THROUGH-1, which creates a DO loop that begins at this pointer
and has the length of the list of numbers minus one as its upner bound. This goal
appears as:

(GOAL (LOOP-THROUGH

((LIST O" NUMBERS)
NIL
(MINUS (LENGTH (LIST OF NUMBERS)H1))))
This is interpreted as "goal for creating an inner loop through the list of numbers

beginning at the default location (represented by the NiL) and running to the length of

the list of numbers minus one." This goal results in a call to CODE-GEN using the

template, LOOP-3. Since the OLDCODE element is present in STM, the function, HOW-




MODIFY, is called for each piece of code generated from this template. It marks these

new pieces as replacements for the old DO loop. When coding of {he entire template is
completed, the combined result of the goal and the one previous to it is to produce the
code, which performs the inner loop for the ordering operation:

1 =1+1

DO 10 11= 1,99

In the protocol, up to line 97, the subject uses 100 as the terminating label for the
DO loop while the program uses 10. The subject’s change to 10 in lines 97-98 does not
arpear to be motivated by the achieved or desired effects of the code he is writing,
but, as in a similar case in problem RICHARD, by his set of conventions for generating
labels. As such, no attempt has been made to make the model produce the sane
behavior as the subject.

Once the two loops have been created, the next step in ordering the the numbers
is ‘o test whether the current largest number is larger than the next number to be
tested in the array. This takes place in 80-83 of the protocol:

S80:IF L suB 11s

S81:LESS THAN EQUAL TO

$82:L SUB J GO TO 100

A83:[WRITES IF(L(I).LE.L())GO TO 100]

The effect of completing the two DO statements serves as part of the inveking
conditions for a production which creates a goal for writing this code. This goal
appears as

(GOAL {IF (TEST (GREATER)

(ARRAY-ELEMENT {LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (INNER-LOOP-INDEX))))
(GOTO (LABEL

(LOOP-THROUGH ((LIST OF NUMBERS)
(ORDER (LIST OF NUMBERS)))))
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This goal invokes the production, GOAL-IF-TEST-GREATER-1, which calls CODE-GEN with

template, IF-1. IF-1 is a general template for IF statements which have a GOTO as their
action. Code for the specific test within the IF statement is generated by creating a

sub-goal for that specific test. The goal for creating the test for which element is

greater appears as

(GOAL (TEST ((GREATER)
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (INNER-LOOP-INDEX))))))

The production, GOAL-TEST-GREATER-1, satisfies this goal by calling CODE-GEN with the
template, TEST-2; it resuits in the code,

L(D.GT.L(Y

and has the effect,

(EFFECT {TEST ((GREATER)
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (INNER-LOOP-INDEX)))))

When the goal for the entire IF statement is satisfied, it produces the code,

IF (L(D.GT.(L(J) GOTO 10

which has the effect,

(EFFECT (BRANCH-IF
(GREATER
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (INNER-LOOP-INDEX))))
(GOTO (LABEL

(LOOP-THROUGH
((LIST OF NUMBERS)
(ORDER (LIST OF NUMBERS))))
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This is interpreted as “if the array element pointed to by the outer loop index is

greater than the array element pointed to by the inner loop index, branch to the label
which is the end of the loop for ordering the list of numbers."

If the current element is greater than the largest element found so far, then the
next step in the ordering operation is to swap the two elements. In the program, the
goal for doing the entire swap is satisfied by calling PLAN-ORDER-AFTER-BRANCH-IF-1
which calls CODE-GEN with a template, SWAP-1. This template, when completed,
generates the following code for the swap:

LL=L(D)

L(D=L(J)

L()=LL
This use of a single template to generate sever:l lines of code is equivalent to the
assertion that, for the subject, these several lines of code are a single knowledge unit.
Lines 84-88 of the protocol support this assertion:
S84:0THERWISE WE SAY L SUB |
A85:[WRITES LL=L()]
S86:L SUB 1L SUBJ

A87:[WRITES L(D)=L())]
S88:L SUB J EQUAL L

They show that the generation of this code takes place as a single, uninterrupted

operation, which would be the case if knowledge about how to generate it were a single
unit.

After the swap is complete, the code must be written to close the loop. It is done in
lines 91 and 92 of the protocol:

A91:[WRITES 100 CONTINUE]
S92:ALL RIGHT, THEY'RE NOW IN ORDER

The goa! for this is:
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(GOAL (LOOP-END
(LABEL (LOOP-THROUGH ((LIST OF NUMBERS)
(ORDER (LIST OF NUMBERS))))

It is placed into STM as the result of a production, PLAN-ORDER-AFTER-SWAPPED-1,
whose invoking conditions are the plan element, the effect of the swap, and the CODE-
CONDITION element that was placed into STM when the loops were created. The goal is
satistied with a production, GOAL-LOOP-END-1, that calls CODE-GEN with the template,
LOOP-END-1, to generate a CONTINUE statement. At this point, the completed code

looks like:

DO101=1,100

I1 =11 +1

DO10J=1,99
IFCL(I).GT.L(J))GOTO ic
K=L(1])

L(I)=L(J)

L(J)=K

10 CONTINUE

Completion of the loop also completes the plan element for ordering the list of

numbers, as the subject states in line 92. The next plan element is

(PLAN-ELEMENT
(FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS))))

which calls for finding the first positive in the list of numbers, as can be inferred from
lines 93-95 of the protocol:
S93:NOW WE SAY

S94:START FROM THE FIRST
S95:FIND THE FIRST POSITIVE

The first step in carrying out this plan element is to invoke PLAN-FIND-EXISTENCE-

AFTER-FIRST-POSITIVE-1 which creates a goal,

(GOAL
(FIND-EXISTENCE-LOOP-THROUGH




(LIST OF NUMBERS)

((FIRST POSITIVE)

((FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS))))
It specifies the creation of a loop for finding the existence of the first positive In the
list of numbers; this is done by PLAN-FIND-EXISTENCE-FIRST-POSITIVE-1. This goal is
satisfied by a production, GCAL-FIND-EXISTENCE-LOOP-THROUGH-1, which calls CODE-

GEN with the template, LOOP-3, to create

DO 20 1=1,100

The effect of this code serves as part of the invoking condition for the next step in
finding the first positive, creation of an IF statement which tests whether the current
element pointed to by the loop index is positive, as is done In lines 101-106 of the
protocol:

SI101:IF L SUB I IS GREATER THAN L
A102:{WRITES IF (L(I).GT. L( )
S103:IF IT'S GREATER THAN
S104:IT’S EITHER ZERO OR ONE
S105:0NE

$106:GO TO 30

The goal for this appears as:

(GOAL
(IF (TEST (POSITIVE)
(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))
(GOTO (LABEL (POSITIVE-FOUND) SMALL))))
This is Interpreted as "goal for testing whether the element pointed to by the array
index is positive; if it 1s, go to a label which means ‘positive found".” Again, the general

template, IF-1, is used in creating the code for satisfying this goal, so that the test Itself

appears as a separate goal. Note that in the protocol an indication of the validity of
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this separation appears in lines 101-106; the subject knows how to write the beginning
of the IF statement and the GOTO at the end, but he puzzles over the test in the middle
of the statement.
The goal for the test in the model is:
(GOAL (TEST ((POSITIVEXARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))))
Satisfaction of this goal permits the completion ~f the IF statement to give:

IF(L(D) .GT. 0) GOTO 30

The effect of this code serves to complete the plan element for finding the first positive
in the hst of numbers.

The next plan element is

(PLAN-ELEMENT (BEGIN! (OTHERWISE)))

The production that is sensitive to this plan element, PLAN-BEGIN-1, does not create
any goals for code generation nor does it generate any code directly; instead, this plan
element serves to indicate that what follows belongs together as one group inside the
DO loop.

In the protocol, the subject indicates this by:

S108:0THERWISE WE SAY 20 SAYS

The first plan element of this group is

(PLAN-ELEMENT
(SET (CORRESPONDING-ELEMENT
(/\UXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))
(VARIABLE (LOOP-INDEX))))




which calls for setting the corresponding element of the auxillery array to the value of
the variable which is the loop index. Since this plan element can be carried out by only
@ single line of code, the production which responas to this plan element, PLAN-SET-
EQUAL-1, does not create any GOALs; instead, it calls CODE-GEN directly with the
template, EQUAL-2, to produce the code,

M(1)=I

In the protocol, this appears as:
S109:M S'i3 1 EQUALS |

A110:[WRITES 20 M(I)=I]
S111: NUMBER

The suceeding plan element is:

(PLAN-ELEMENT (ENDY))

This serves to match the preceding BEGIN! and indicates the end of the group of actions
which are performed if the number is not positive. The production which responds to it
and to ithe presence of a CODE-CONDTION element, PLAN-END-CODE-CONDITION-2,
calls CODE-GEN with the template, LOOP-END-1, which produces the code,

20 CONTINUE

to close the loop.
The END! plan element is followed by:

(PLAN-ELEMENT (END! (FIND-EXISTENCE-LOOP-THROUGH)))

A production with patterns, (PLAN-ELEMENT (END! sRESTs)) and (OLD-EFFECT (LOOP-

TERMINATION sRESTs)), matches this element and the element,

(OLD-EFFECT
. (LOOP-TERMINATION
(FIND-EXISTENCE-LOOP-THROUGH
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((LiST OF NUMBERS) ((FIRST POSITIVE)
((FIND-EXISTENCE
((FIRST POSITIVE) (LIST OF NUMBERS)))))))
The latter s the effect of the CONTINUE statement thet termineted the loop. The

production then generates:

GOTO 300

This is the branch that is taken it no positive numbers are found. The equivalant
behavior is seen in lines 112-115 of the protocol:

S112:AND DOWN HERE IF IT EVER GETS THROUGH THE LOOP WE’RE DONE

S113:GO TO EXIT

S114:EXIT WE'LL CALL 500
A115:[WRITES GO TO 500]

Note the difference in label numbers between the program and the protocol,

The next plan element is:

(PLAN-ELEMENT (BEGIN! (POSITIVE-FOUND)))

As in the other uses of BEGIN! elements, this marks the beginning of a group or section
of code, in this case, that for the action to be taken when the first positive is found. It
results in a call to CODE-GEN with the template, LABEL-1, which generales the label,
30, corresponding to the subject’s behavior in lines 116-118:

S116:0K, 30

Al17:[WRITES LABEL 30)
S118:NOW THAT WE HAVE THE FIRST ONE

After this label is generated, the next plan element is

(PLAN-ELEMENT
(FIND-AND-SWAP
((MULTIPLE) (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
((LIST OF NUMBERS) (VARIABLE (INNER-LOOP-INDEX)))))




which calls for finding multiples in the list of numbers and swapping them with non-
multiples. This plan element is never cumpleted, since, in the course of it, the subject
discovers the error in his plan.

The code completed by the program up to this point is:

DO101=1,100

Il =11+1

DO10J=1,99
IFCL(D).GT.L(J))GOTO 10
KelL(I)

L(D)=L(J)

L(J)=K

10 CONTINUE
DO201=1, 100
IF(L(D) .GT. 0) GOTO 30
M(1)=1

20 CONTINUE

GOTO 300

30

As noted, it differs from the code written by the subject only in the label names. Again,

the model trace creates code in about the same size ¢f tnit and in the same order as

the subject does.

4.3 Problem JOHN
Problem JO:N, the fourth problem done by the subject, took 27.5 minutes for the
code to be written (slightly above the average). In it, tre subject was asked to write a
program which would take every other number and place it at the beginning of the

array and put the original position of the number in the corresponding position in M,

(The complete protocol is given in Appendix 2.)

This problem was selected for modeling because, surprisingly, considering the
relative simplicity of the prob'em, th~ protocol shows a very extended planning phase,
taking a total of the first 263 !in:s of protocol (about 21 minutes worth). Of interest
was whether this extended planning would have any effect on the coding phase.
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Most of the planning is concerned with finding a wav to solve the problem only by
moving the elements around within the array, L, instead of copying them into another
array. He begins by trying to work out the mappings from the initial positions to the
final ones to develop a formula for the subscript numbers. Once he has done this, he
contitues to work with the subscript mappings and hits upon the idea that the mapping
can be completely circular and that the problem may be solved simply by exchanging
pairs of elements in the proper order. To test this idea, he begins to work out the
entire set of mappings for the 100 array elements but gives up when he sees no
regular pattern emerging. He then works out the mappings for a very short array using
a diagram and discovers that simply exchanging elements pairwise will not work, at least
in the order in which he is trying to do it. He then goes ahead and works out a solution
involving copying the arrays.

The basic structure of this plan is seen in lines 269-276 and involves copying the
array elements into M and thcn copying them back into L. That he intends to do the
copying as two separate operat:ans, one for the odd numbers and one for the even
numbers, can be inferred from lines 289-290 and from the code he actually writes.
Similarly, his intent to do the copying back in two parts is obtained from lines 332-335
and from the written code. The complete plan that he has when he begins to write coce
is:

1. Copy the elements at odd positions in the list of numbers into the first half of
the auxillary array.

2. Copy the elements at even positions in the list of numbers into the second half
of the auxillary array.

3. Copy the first half of the auxillary array into the first half of the main array and
set the first half of the auxillary array to the numbers of the even pasitions.

H

. Copy the second half of the auxillary array into the second half of the main array

and set the second half of the auxillary array to the numbers of the odd
positions.
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In the program, this plan is represented as:
((COPY ((ODD-POSITIONS) {LIST OF NUMBERS))
((FIRST-HALF) (AUXILLARY ARRAY)))

(COPY ((EVEN-POSITIONS) (LIST OF NUMBERS))

((SECOND-HALF) (AUXILLARY ARRAY)))
(COPY-AND-SET
(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))
((AUXILLARY ARRAY) (EVEN-FQSITIGINSY)
(COPY-AND-SET
(((SECOND-HALF) (AUXILLARY ARRAY))
((SECOND-HALF) (LIST OF NUMBERS)))
((AUXILLARY ARRAY) (ODD-POSITIONS)))

Note that this plan is not a very efficient one, even for the basic method chosen; by
using appropriate subscript expressions, it is possible to soive the problem using two
loops instead of four. The subject is aware of this; in lines 325-334 he attempts to do
the second two plan elements as one single loop, but changes his mind in line 334,
perhaps because the effort involved in figuring out the proper subscripts is too large.
In terms of the theory this corresponds to modifying or revising the first plan,

attempting to code the revised plan, having the revised plan fail (too high an effort

expenditure), and then returning to the original plan.

4.3.1 Model Operation ior Lines 279-359

Lines 279-359 of the protocol have been modeled with the program; they cover the
generation of code for the entire program.

At the beginning, STM contains

(PLAN-ELEMENT (COPY ((ODD-POSITIONS) (LIST OF NUMBERS))

((FIRST-HALF) (AUXILLARY ARRAY)))

which is the first element of the plan that the subject has for solving the problem. The
production system responds to this with COPY-LOOP-THROUGH-1 which creates o goal
for looping through the list of numbers:
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(GOAL
(LOOP-THROUGH
((LIST OF NUMBERS)
(COPY ((ODD-POSITIONS)LIST OF NUMBERS))
((FIRST-HALFXAUXILLARY ARRAY)))))
NiL
(VALUE ((ODD-POSITIONSKLIST OF NUMBERS))))

This requires the creation of a loop that rums through the list of numbers (to copy the
odd positions into the first half of the auxillary array) which starts at the default value
of 1 (indicated by the NIL) and hes as its upper bound the value of the number of odd
positions in the list cf numbers. The production, GOAL-LOOP-THROUGH-2, is invoked in
response to this goa!; it calls CODE-GEN with template, LOOP-2, to create

DO 10 1=1,100

corresponding to the code that the subject creates in lines 279-282:

$279:D0 10

5280:1 GOES EQUALS ONE TO

A281:[WRITES DO 10 I=1, ]

S282:LET'S WORRY ABOUT WHERE IT'G GONNA GO TO LATER

The production also leaves a code condion element in STM,

(CODE-CONDITION
OPEN-DO-LOOP
(LABEL
((LIST OF NUMBERS)
((COP'7 ((ODD-POSITIONS) (LIST OF NUMBERS))
((FIRST-HALF) (AUXILLARY ARRAY)))))

which indicates that the DO loop has not baen terminated yet.

The etfect of this code and the plan element are the invoking conditions for the

production, COPY-SET-EQUAL-1, which creates the goal:

(GOAL
(SET (ARRAY-ELEMENT (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT
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(LIST OF NUMBERS)
(POINTER-EXPRESSION
((ODD-POSITIONS) (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))))
This goal invokes the production, GOAL-SET-EQUAL-1, which calls CODE-GEN with the
template, EQUAL-1, tc produce the code ‘or setting the current element of the suxillary
array equal to the next odd number in the list of numbers.

Creating the cods for this requires setting two subscripted variables equal {0 each
other. Normally, subscribted variables are handled identically to simple variables: the
decription of the variable is nassed to CODE-EL by CODE-GEN. If both tha variable and
subscript have been used before and are in MEAN'NGS then CODE-EL returns es a
"name” the complete subscrigted varisble name, including parenthesis and subscript

variable. Thus, if CODE-EL is given:

(ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))

it returns

L)

It either the array name or tie subscript name are not In MEANINGS, then CODE-EL
reports failure and returns NIL for the whole expression. This mechanism is intended to
represent a psychological reality, that if the subscript is known, the subject treats
subscripted variables identically to simple ones.

In this case, the expression for the current element of the auxillary array is:

M(1)

Since both the array name and the subscript are known, thi. is generated in the manner

just described. The expressior for the next odd element in the list of numbers
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represents much more of a problem; not only is the subscript not in MEANINGS, but it is
a compiex e:pression rather tnan just a variable name. The model handles this by

creating a goal for the whole subscripted variable name when CODE-EL fails:

(GOAL
(ARRAY-ELEMENT
(LIST OF NUMBERS)
(POINTER-EXPRESSION
((ODD-POSITIONS) (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))}

This goal is sa'isfied by GOAL-ARRAY-ELEMENT-1 which calls CODE-GEN with template,
ARRAY-ELEMENT-1. The process of creating code for the template in turn produ ces:
(GOAL
(POINTER-EXPRESSION

{(ODD-POSITIONS) (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX)))))

This goal is satisfied by the GOAL-POINTER-EXPRESSION-ODD-POSITIONS-1 production
which then permits completion of coding of the ARRAY-ELEMENT-1 template. In turn,

this allows completion of the EQUAL-1 template to produce:

M) =L(2s]1+1])

An analogous process is visible in the protocol. In lines 283-284, he writes the first
part of the statement up to the subscript for L:

S283:SAY M SUB I I5 GOING TO BE £QUAL TO L SUB
A2384:[WRITES M(I) = L( ]

Lines 285-292 are concerned with the creation of the subscribt and correspond to
the goal for a pointer expressior. in the program:

S2851ALL RIGHT, NOW WE NEED A POINTER GOING BACKWARDS
$286:BUT THAT DOESN'T MATTER SO MUCH

$287:YEAH, HERE’S SUB |

S288:AHH, IS THERE A TRIVIAL INVERSE

$289:GO FROM ONE TO 50
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S290:THAT’S JUST GONNA BE THE ODD NUMBERS
$291:S0 THAT'S L 2 TIMES I PLUS ONE
A292:(COMPLETES STATEMENT WITH (2% ] + 1)}

The effect of this piece of code, again, combined with the plan element, are the
conditions for the production, COPY-LOOP-TERMINATION-1, which produces
(GOAL
(LOOP-END
(LABEL
(LOOP-THROUGH
((LIST OF NUMBERS)

((COPY ((ODD-POSITIONS) (LIST OF NUMBERS))
((FIRST-HALF) (AUXILLARY ARRAY)IM)

The production, GOAL-LOOP-END-1, responds to this goal by calling CODE-GEN on the
template, LOOP-:ND-1, to generate the CONTINUE statement which closes the loop. This
completes the plun element.

The code which has been completed up to this point is:
DO10I=1,50
M(I)=L(2%1+1)
10 CONTINUE
The creation of this piece of code by the subject takes place in a slightly different
order than in the program. The subject writes the beginning of the DO statement, but

decides to figure out later what the upper bound of the loop should be:

S282:LET'S WORRY ABOUT WHERZ IT'S GONNA GO TO LATER

He then begins to write the statement for setting the two array elements equal
and interrupts what is doing tu go back and complete the DO statement:

$289:GO FROM ONE TO 50
$290:THAT'S JUST GONNA BE THE ODD NUMBERS
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Since fhe subscript expression depends on the loop bound, this suggests that the

subject has deferred deciding on the loop bound until after he has decided on the
subscript expression. The model lacks mechanisms for deferring decisions in this
manner so that it works in the reverse order, using the loop bound to determine the
subscript.

The next plan element is:

(PLAN-ELEMENT (COPY ((EVEN-POSITIONS) (LIST OF NUMBERS))

((SECOND-HALF) (AUXILLARY ARRAY)))

This plan element is very similar to the previous one, and generation of code for it
takes place in a very similar manner. Again, however, there is a discrepancy between
the way in which the program generates code and the way in which the subject does.
For this loop, the subject first tries making the index increase by steps of 2 with an
upper bound of 100 and using 50 + 1/2 as the subscript expression. He eventually
decides to do it with a loop running from 1 to 50 and using | as the subscript.
tunctionally, this is completely equivalent to the way the model finally writes the
program.The subject’s rationale for trying this alternative is that it may be more
efficient in terms of machine time:
S310:DIVISION IS A LITTLE BIT SLOWER THAN MULTIPLICATION
S31 LLIWE'RE STILL DOING THE SAME NUMBER OF STEPS
§312:50 THAT'S NO GOOD
S313:THAT DOESN'T SAVE ANYTHING

Efficiency issues such as this are presumably handled «s a special kind of symbolic
execution in which the emphasis is on certan side effects of the code structure -
memory utilization, etc. The program does not incorporate this specialized symbolic
execution and so does not attempt this altenative coding.

The succeeding plan element is:




(PLAN-ELEMENT (COPY-AND-SET
(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))
((AUXILLARY ARRAY) (EVEN-POSITIONS)))

It calls for copying the first half of the auxillary array inta the first half of the array for
the list of numbers and setting the elements in the first half of the auxillary array to
the numbers of the even positions in the original array. This is first responded to by
the production, COPY-AND-SET-LOOP-THROUGH-1, whicn produces the goal,

(GOAL
(LOOP-THROUGH
((AUXILLARY ARRAY)
((COPY-AND-SET

(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))
((AUXILLARY ARRAY) (EVEN-POSITIONZY)))

NIL

(VALUE ((FIRST-HALF) (AUXILLARY ARRAY)))))

This is responded to by the production, GOAL-LOOP-THROUGH-2. This production calls
CODE-GEN to create a DO-loop statement.

The effect of this loop in the context of the plan element invokes COPY-AND-SET:
EQUAL-ARRAY-HALVES-1; the goal created by this production is satisfied by GOAL-SET-
EQUAL-1 which creates the goa! for setting the element of the array for the list of
numbers equal to the corresponding element in the auxillary array.

The next step in carrying out the plan is:

(GOAL
(SET (ARRAY-ELEMENT (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))
(POINTER-EXPRESSION

((EVEN-POSITIONS) (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))))

It is a goal for setting the elements in the auxillary array equal to the numbers of the
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odd positions in the list. It is responded to by GOAL-SET-EQUAL-1 which uses CCDE-
GEN to attempt to create the necessary code. In the process of creating this code the
goal:

(GOAL
(POINTER-EXPRESSION
((EVEN-POSITIONS) (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))))

must be satisfied; it is a goal for an expression which is the value of the even positions
in the arrays. When this goal is satisfi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>